Suppr超能文献

用于非线性和非平稳时间序列分析的傅里叶分解方法。

The Fourier decomposition method for nonlinear and non-stationary time series analysis.

作者信息

Singh Pushpendra, Joshi Shiv Dutt, Patney Rakesh Kumar, Saha Kaushik

机构信息

Department of Electrical Engineering, Indian Institute of Technology Delhi, Delhi, India.

Department of ECE, Jaypee Institute of Information Technology Noida, Noida, India.

出版信息

Proc Math Phys Eng Sci. 2017 Mar;473(2199):20160871. doi: 10.1098/rspa.2016.0871. Epub 2017 Mar 15.

Abstract

for many decades, there has been a general perception in the literature that Fourier methods are not suitable for the analysis of nonlinear and non-stationary data. In this paper, we propose a novel and adaptive Fourier decomposition method (FDM), based on the Fourier theory, and demonstrate its efficacy for the analysis of nonlinear and non-stationary time series. The proposed FDM decomposes any data into a small number of 'Fourier intrinsic band functions' (FIBFs). The FDM presents a generalized Fourier expansion with variable amplitudes and variable frequencies of a time series by the Fourier method itself. We propose an idea of zero-phase filter bank-based multivariate FDM (MFDM), for the analysis of multivariate nonlinear and non-stationary time series, using the FDM. We also present an algorithm to obtain cut-off frequencies for MFDM. The proposed MFDM generates a finite number of band-limited multivariate FIBFs (MFIBFs). The MFDM preserves some intrinsic physical properties of the multivariate data, such as scale alignment, trend and instantaneous frequency. The proposed methods provide a time-frequency-energy (TFE) distribution that reveals the intrinsic structure of a data. Numerical computations and simulations have been carried out and comparison is made with the empirical mode decomposition algorithms.

摘要

几十年来,文献中普遍认为傅里叶方法不适用于非线性和非平稳数据的分析。在本文中,我们基于傅里叶理论提出了一种新颖的自适应傅里叶分解方法(FDM),并证明了其在分析非线性和非平稳时间序列方面的有效性。所提出的FDM将任何数据分解为少量的“傅里叶本征带函数”(FIBF)。FDM通过傅里叶方法本身给出了一个具有可变幅度和可变频率的时间序列的广义傅里叶展开。我们提出了一种基于零相位滤波器组的多元FDM(MFDM)的想法,用于使用FDM分析多元非线性和非平稳时间序列。我们还提出了一种获取MFDM截止频率的算法。所提出的MFDM生成有限数量的带限多元FIBF(MFIBF)。MFDM保留了多元数据的一些内在物理特性,如尺度对齐、趋势和瞬时频率。所提出的方法提供了一种时频能量(TFE)分布,揭示了数据的内在结构。已进行了数值计算和模拟,并与经验模态分解算法进行了比较。

相似文献

10
Causal inference in neuronal time-series using adaptive decomposition.使用自适应分解对神经元时间序列进行因果推断。
J Neurosci Methods. 2015 Apr 30;245:73-90. doi: 10.1016/j.jneumeth.2015.02.013. Epub 2015 Feb 24.

引用本文的文献

7
Application of EEG in migraine.脑电图在偏头痛中的应用。
Front Hum Neurosci. 2023 Feb 17;17:1082317. doi: 10.3389/fnhum.2023.1082317. eCollection 2023.
8
Brain Microtubule Electrical Oscillations-Empirical Mode Decomposition Analysis.脑微管电振荡-经验模态分解分析。
Cell Mol Neurobiol. 2023 Jul;43(5):2089-2104. doi: 10.1007/s10571-022-01290-9. Epub 2022 Oct 7.
9
Understanding Harmonic Structures Through Instantaneous Frequency.通过瞬时频率理解谐波结构。
IEEE Open J Signal Process. 2022 Aug 10;3:320-334. doi: 10.1109/OJSP.2022.3198012. eCollection 2022.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验