Suppr超能文献

用于机械设备故障诊断的多层融合相关熵表示

Multilayer Fused Correntropy Reprsenstation for Fault Diagnosis of Mechanical Equipment.

作者信息

Deng Qi, Zhao Guanhui, Jiang Weixiong, Wu Jun, Dai Tianjiao

机构信息

School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China.

出版信息

Sensors (Basel). 2024 Sep 23;24(18):6142. doi: 10.3390/s24186142.

Abstract

Fault diagnosis is vital for improving the reliability and safety of mechanical equipment. Existing fault diagnosis methods require a large number of samples for model training. However, in real-world environments, mechanical equipment usually operates under healthy conditions during most of its service life, resulting in a scarcity of fault samples. To solve this problem, a novel multilayer fusion correntropy representation method combined with a support vector machine is proposed for the fault diagnosis of mechanical equipment. First, the monitoring signal is expanded into multilayer signal components using wavelet packet decomposition. Then, the correlation between the signal components of each layer is expressed by correntropy, and the corresponding correntropy matrix is constructed. After performing the matrix logarithm operator, all correntropy matrices composed of correntropy values are fused into a vector, which is viewed as a feature of the signal. Finally, a support vector machine is established using small samples to realize fault classification. The effectiveness of the proposed method is validated on four public datasets. The results indicate that compared with other methods, the proposed method has advantages in terms of diagnosis accuracy and noise immunity ability.

摘要

故障诊断对于提高机械设备的可靠性和安全性至关重要。现有的故障诊断方法需要大量样本进行模型训练。然而,在实际环境中,机械设备在其大部分使用寿命期间通常在健康状态下运行,导致故障样本稀缺。为了解决这个问题,提出了一种结合支持向量机的新型多层融合相关熵表示方法用于机械设备的故障诊断。首先,利用小波包分解将监测信号扩展为多层信号分量。然后,用相关熵表示各层信号分量之间的相关性,并构建相应的相关熵矩阵。在执行矩阵对数算子后,由相关熵值组成的所有相关熵矩阵被融合成一个向量,该向量被视为信号的一个特征。最后,利用小样本建立支持向量机以实现故障分类。该方法的有效性在四个公共数据集上得到了验证。结果表明,与其他方法相比,该方法在诊断准确率和抗噪能力方面具有优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0a8/11435528/dfbb9885e006/sensors-24-06142-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验