Suppr超能文献

新型致病基因组变异的语义优先级排序。

Semantic prioritization of novel causative genomic variants.

作者信息

Boudellioua Imane, Mahamad Razali Rozaimi B, Kulmanov Maxat, Hashish Yasmeen, Bajic Vladimir B, Goncalves-Serra Eva, Schoenmakers Nadia, Gkoutos Georgios V, Schofield Paul N, Hoehndorf Robert

机构信息

King Abdullah University of Science and Technology, Computer, Electrical & Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, Thuwal, Saudi Arabia.

Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom.

出版信息

PLoS Comput Biol. 2017 Apr 17;13(4):e1005500. doi: 10.1371/journal.pcbi.1005500. eCollection 2017 Apr.

Abstract

Discriminating the causative disease variant(s) for individuals with inherited or de novo mutations presents one of the main challenges faced by the clinical genetics community today. Computational approaches for variant prioritization include machine learning methods utilizing a large number of features, including molecular information, interaction networks, or phenotypes. Here, we demonstrate the PhenomeNET Variant Predictor (PVP) system that exploits semantic technologies and automated reasoning over genotype-phenotype relations to filter and prioritize variants in whole exome and whole genome sequencing datasets. We demonstrate the performance of PVP in identifying causative variants on a large number of synthetic whole exome and whole genome sequences, covering a wide range of diseases and syndromes. In a retrospective study, we further illustrate the application of PVP for the interpretation of whole exome sequencing data in patients suffering from congenital hypothyroidism. We find that PVP accurately identifies causative variants in whole exome and whole genome sequencing datasets and provides a powerful resource for the discovery of causal variants.

摘要

鉴别具有遗传或新发突变个体的致病疾病变异是当今临床遗传学领域面临的主要挑战之一。用于变异优先级排序的计算方法包括利用大量特征(包括分子信息、相互作用网络或表型)的机器学习方法。在此,我们展示了PhenomeNET变异预测器(PVP)系统,该系统利用语义技术和对基因型-表型关系的自动推理,对全外显子组和全基因组测序数据集中的变异进行筛选和优先级排序。我们展示了PVP在大量合成全外显子组和全基因组序列上识别致病变异的性能,这些序列涵盖了广泛的疾病和综合征。在一项回顾性研究中,我们进一步说明了PVP在解释先天性甲状腺功能减退症患者全外显子组测序数据中的应用。我们发现,PVP能准确识别全外显子组和全基因组测序数据集中的致病变异,并为发现因果变异提供了强大资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df03/5411092/a850645a02ac/pcbi.1005500.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验