Suppr超能文献

模式生物表型对计算鉴定人类疾病基因的贡献。

Contribution of model organism phenotypes to the computational identification of human disease genes.

机构信息

Computational Bioscience Research Center, King Abdullah University of Science and Technology, 4700 KAUST, 23955 Thuwal, Saudi Arabia.

Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.

出版信息

Dis Model Mech. 2022 Jul 1;15(7). doi: 10.1242/dmm.049441. Epub 2022 Aug 3.

Abstract

Computing phenotypic similarity helps identify new disease genes and diagnose rare diseases. Genotype-phenotype data from orthologous genes in model organisms can compensate for lack of human data and increase genome coverage. In the past decade, cross-species phenotype comparisons have proven valuble, and several ontologies have been developed for this purpose. The relative contribution of different model organisms to computational identification of disease-associated genes is not fully explored. We used phenotype ontologies to semantically relate phenotypes resulting from loss-of-function mutations in model organisms to disease-associated phenotypes in humans. Semantic machine learning methods were used to measure the contribution of different model organisms to the identification of known human gene-disease associations. We found that mouse genotype-phenotype data provided the most important dataset in the identification of human disease genes by semantic similarity and machine learning over phenotype ontologies. Other model organisms' data did not improve identification over that obtained using the mouse alone, and therefore did not contribute significantly to this task. Our work impacts on the development of integrated phenotype ontologies, as well as for the use of model organism phenotypes in human genetic variant interpretation. This article has an associated First Person interview with the first author of the paper.

摘要

计算表型相似性有助于识别新的疾病基因和诊断罕见疾病。来自模式生物同源基因的基因型-表型数据可以弥补人类数据的不足并增加基因组的覆盖范围。在过去的十年中,跨物种表型比较已被证明具有价值,为此已经开发了几个本体。不同模式生物对计算识别疾病相关基因的相对贡献尚未得到充分探索。我们使用表型本体将模式生物中功能丧失突变引起的表型与人类疾病相关表型在语义上联系起来。使用语义机器学习方法来衡量不同模式生物对识别已知人类基因-疾病关联的贡献。我们发现,通过语义相似性和基于表型本体的机器学习,鼠的基因型-表型数据在识别人类疾病基因方面提供了最重要的数据集。其他模式生物的数据并没有比单独使用鼠的数据在识别方面有明显的提高,因此在这项任务中没有做出重要贡献。我们的工作对集成表型本体的开发以及在人类遗传变异解释中使用模式生物表型产生了影响。本文有一篇与第一作者的第一人称访谈。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db71/9366895/5ed33a7508c2/dmm-15-049441-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验