Suppr超能文献

构建生物多样性术语库

Constructing a biodiversity terminological inventory.

作者信息

Nguyen Nhung T H, Soto Axel J, Kontonatsios Georgios, Batista-Navarro Riza, Ananiadou Sophia

机构信息

National Centre for Text Mining, School of Computer Science, University of Manchester, Manchester, United Kingdom.

出版信息

PLoS One. 2017 Apr 17;12(4):e0175277. doi: 10.1371/journal.pone.0175277. eCollection 2017.

Abstract

The increasing growth of literature in biodiversity presents challenges to users who need to discover pertinent information in an efficient and timely manner. In response, text mining techniques offer solutions by facilitating the automated discovery of knowledge from large textual data. An important step in text mining is the recognition of concepts via their linguistic realisation, i.e., terms. However, a given concept may be referred to in text using various synonyms or term variants, making search systems likely to overlook documents mentioning less known variants, which are albeit relevant to a query term. Domain-specific terminological resources, which include term variants, synonyms and related terms, are thus important in supporting semantic search over large textual archives. This article describes the use of text mining methods for the automatic construction of a large-scale biodiversity term inventory. The inventory consists of names of species, amongst which naming variations are prevalent. We apply a number of distributional semantic techniques on all of the titles in the Biodiversity Heritage Library, to compute semantic similarity between species names and support the automated construction of the resource. With the construction of our biodiversity term inventory, we demonstrate that distributional semantic models are able to identify semantically similar names that are not yet recorded in existing taxonomies. Such methods can thus be used to update existing taxonomies semi-automatically by deriving semantically related taxonomic names from a text corpus and allowing expert curators to validate them. We also evaluate our inventory as a means to improve search by facilitating automatic query expansion. Specifically, we developed a visual search interface that suggests semantically related species names, which are available in our inventory but not always in other repositories, to incorporate into the search query. An assessment of the interface by domain experts reveals that our query expansion based on related names is useful for increasing the number of relevant documents retrieved. Its exploitation can benefit both users and developers of search engines and text mining applications.

摘要

生物多样性文献数量的不断增长给那些需要高效、及时地发现相关信息的用户带来了挑战。作为回应,文本挖掘技术通过促进从大量文本数据中自动发现知识提供了解决方案。文本挖掘中的一个重要步骤是通过概念的语言实现(即术语)来识别概念。然而,给定的概念在文本中可能会使用各种同义词或术语变体来指代,这使得搜索系统很可能忽略提及不太知名变体的文档,而这些文档尽管与查询词相关。因此,包括术语变体、同义词和相关术语在内的特定领域术语资源对于支持在大型文本档案上进行语义搜索很重要。本文描述了使用文本挖掘方法自动构建大规模生物多样性术语清单的过程。该清单包含物种名称,其中命名变体很普遍。我们对生物多样性遗产图书馆中的所有标题应用了多种分布语义技术,以计算物种名称之间的语义相似度,并支持该资源的自动构建。通过构建我们的生物多样性术语清单,我们证明了分布语义模型能够识别现有分类法中尚未记录的语义相似名称。因此,此类方法可用于通过从文本语料库中推导语义相关的分类学名称并让专家策展人进行验证,来半自动更新现有分类法。我们还评估了我们的清单作为一种通过促进自动查询扩展来改进搜索的手段。具体来说,我们开发了一个视觉搜索界面,该界面会建议语义相关的物种名称(这些名称在我们的清单中可用,但在其他存储库中并不总是可用),以便纳入搜索查询。领域专家对该界面的评估表明,我们基于相关名称的查询扩展对于增加检索到的相关文档数量很有用。其应用对搜索引擎和文本挖掘应用的用户和开发者都有益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05ee/5393592/4532a7bdb151/pone.0175277.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验