Suppr超能文献

通过环境电离质谱成像技术对浆液性卵巢癌侵袭性的代谢标志物及统计预测

Metabolic Markers and Statistical Prediction of Serous Ovarian Cancer Aggressiveness by Ambient Ionization Mass Spectrometry Imaging.

作者信息

Sans Marta, Gharpure Kshipra, Tibshirani Robert, Zhang Jialing, Liang Li, Liu Jinsong, Young Jonathan H, Dood Robert L, Sood Anil K, Eberlin Livia S

机构信息

Department of Chemistry, The University of Texas at Austin, Austin, Texas.

Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.

出版信息

Cancer Res. 2017 Jun 1;77(11):2903-2913. doi: 10.1158/0008-5472.CAN-16-3044. Epub 2017 Apr 17.

Abstract

Ovarian high-grade serous carcinoma (HGSC) results in the highest mortality among gynecological cancers, developing rapidly and aggressively. Dissimilarly, serous borderline ovarian tumors (BOT) can progress into low-grade serous carcinomas and have relatively indolent clinical behavior. The underlying biological differences between HGSC and BOT call for accurate diagnostic methodologies and tailored treatment options, and identification of molecular markers of aggressiveness could provide valuable biochemical insights and improve disease management. Here, we used desorption electrospray ionization (DESI) mass spectrometry (MS) to image and chemically characterize the metabolic profiles of HGSC, BOT, and normal ovarian tissue samples. DESI-MS imaging enabled clear visualization of fine papillary branches in serous BOT and allowed for characterization of spatial features of tumor heterogeneity such as adjacent necrosis and stroma in HGSC. Predictive markers of cancer aggressiveness were identified, including various free fatty acids, metabolites, and complex lipids such as ceramides, glycerophosphoglycerols, cardiolipins, and glycerophosphocholines. Classification models built from a total of 89,826 individual pixels, acquired in positive and negative ion modes from 78 different tissue samples, enabled diagnosis and prediction of HGSC and all tumor samples in comparison with normal tissues, with overall agreements of 96.4% and 96.2%, respectively. HGSC and BOT discrimination was achieved with an overall accuracy of 93.0%. Interestingly, our classification model allowed identification of three BOT samples presenting unusual histologic features that could be associated with the development of low-grade carcinomas. Our results suggest DESI-MS as a powerful approach for rapid serous ovarian cancer diagnosis based on altered metabolic signatures. .

摘要

卵巢高级别浆液性癌(HGSC)在妇科癌症中死亡率最高,发展迅速且侵袭性强。与之不同的是,浆液性交界性卵巢肿瘤(BOT)可进展为低级别浆液性癌,临床行为相对惰性。HGSC和BOT之间潜在的生物学差异需要准确的诊断方法和个性化的治疗方案,而识别侵袭性分子标志物可为疾病管理提供有价值的生化见解并加以改善。在此,我们使用解吸电喷雾电离(DESI)质谱(MS)对HGSC、BOT和正常卵巢组织样本的代谢谱进行成像和化学表征。DESI-MS成像能够清晰显示浆液性BOT中的细乳头分支,并可表征肿瘤异质性的空间特征,如HGSC中的相邻坏死和基质。确定了癌症侵袭性的预测标志物,包括各种游离脂肪酸、代谢物以及复杂脂质,如神经酰胺、甘油磷酸甘油、心磷脂和甘油磷酸胆碱。从78个不同组织样本以正离子和负离子模式采集的总共89,826个单个像素构建的分类模型,能够与正常组织相比诊断和预测HGSC以及所有肿瘤样本,总体一致性分别为96.4%和96.2%。HGSC和BOT的鉴别总体准确率达到93.0%。有趣的是,我们的分类模型能够识别出三个具有异常组织学特征的BOT样本,这些特征可能与低级别癌的发生有关。我们的结果表明,DESI-MS是一种基于代谢特征改变快速诊断浆液性卵巢癌的强大方法。

相似文献

引用本文的文献

本文引用的文献

5
Choline Metabolism Alteration: A Focus on Ovarian Cancer.胆碱代谢改变:聚焦卵巢癌
Front Oncol. 2016 Jun 22;6:153. doi: 10.3389/fonc.2016.00153. eCollection 2016.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验