College of Materials Science and Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing, 210009, P. R. China.
Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 210009, P. R. China.
Adv Mater. 2017 Jun;29(24). doi: 10.1002/adma.201700760. Epub 2017 Apr 18.
Metal hydrides (MHs) have recently been designed for hydrogen sensors, switchable mirrors, rechargeable batteries, and other energy-storage and conversion-related applications. The demands of MHs, particular fast hydrogen absorption/desorption kinetics, have brought their sizes to nanoscale. However, the nanostructured MHs generally suffer from surface passivation and low aggregation-resisting structural stability upon absorption/desorption. This study reports a novel strategy named microencapsulated nanoconfinement to realize local synthesis of nano-MHs, which possess ultrahigh structural stability and superior desorption kinetics. Monodispersed Mg NiH single crystal nanoparticles (NPs) are in situ encapsulated on the surface of graphene sheets (GS) through facile gas-solid reactions. This well-defined MgO coating layer with a thickness of ≈3 nm efficiently separates the NPs from each other to prevent aggregation during hydrogen absorption/desorption cycles, leading to excellent thermal and mechanical stability. More interestingly, the MgO layer shows superior gas-selective permeability to prevent further oxidation of Mg NiH meanwhile accessible for hydrogen absorption/desorption. As a result, an extremely low activation energy (31.2 kJ mol ) for the dehydrogenation reaction is achieved. This study provides alternative insights into designing nanosized MHs with both excellent hydrogen storage activity and thermal/mechanical stability exempting surface modification by agents.
金属氢化物(MHs)最近被设计用于氢气传感器、可切换镜子、可充电电池和其他与能量存储和转换相关的应用。MHs 的需求,特别是快速的吸氢/脱氢动力学,使得它们的尺寸达到了纳米级。然而,纳米结构的 MHs 在吸氢/脱氢时通常会受到表面钝化和低聚集阻力结构稳定性的影响。本研究报告了一种名为微封装纳米约束的新策略,用于实现纳米-MHs 的局部合成,其具有超高的结构稳定性和优异的解吸动力学。通过简单的气固反应,在石墨烯片(GS)表面原位封装了单分散的 MgNiH 单晶纳米颗粒(NPs)。这种具有 ≈3nm 厚度的明确定义的 MgO 涂层有效地将 NPs 彼此分隔开来,以防止在吸氢/脱氢循环过程中聚集,从而实现了优异的热和机械稳定性。更有趣的是,MgO 层对气体具有优异的选择性渗透性,可防止 MgNiH 进一步氧化,同时可用于吸氢/脱氢。结果,脱氢反应的活化能极低(31.2kJmol)。这项研究为设计具有优异储氢活性和热/机械稳定性的纳米 MHs 提供了替代思路,无需通过表面改性剂。