Suppr超能文献

微胶囊纳米限域衍生的具有超高结构稳定性和储氢活性的金属氢化物纳米颗粒。

Metal Hydride Nanoparticles with Ultrahigh Structural Stability and Hydrogen Storage Activity Derived from Microencapsulated Nanoconfinement.

机构信息

College of Materials Science and Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing, 210009, P. R. China.

Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 210009, P. R. China.

出版信息

Adv Mater. 2017 Jun;29(24). doi: 10.1002/adma.201700760. Epub 2017 Apr 18.

Abstract

Metal hydrides (MHs) have recently been designed for hydrogen sensors, switchable mirrors, rechargeable batteries, and other energy-storage and conversion-related applications. The demands of MHs, particular fast hydrogen absorption/desorption kinetics, have brought their sizes to nanoscale. However, the nanostructured MHs generally suffer from surface passivation and low aggregation-resisting structural stability upon absorption/desorption. This study reports a novel strategy named microencapsulated nanoconfinement to realize local synthesis of nano-MHs, which possess ultrahigh structural stability and superior desorption kinetics. Monodispersed Mg NiH single crystal nanoparticles (NPs) are in situ encapsulated on the surface of graphene sheets (GS) through facile gas-solid reactions. This well-defined MgO coating layer with a thickness of ≈3 nm efficiently separates the NPs from each other to prevent aggregation during hydrogen absorption/desorption cycles, leading to excellent thermal and mechanical stability. More interestingly, the MgO layer shows superior gas-selective permeability to prevent further oxidation of Mg NiH meanwhile accessible for hydrogen absorption/desorption. As a result, an extremely low activation energy (31.2 kJ mol ) for the dehydrogenation reaction is achieved. This study provides alternative insights into designing nanosized MHs with both excellent hydrogen storage activity and thermal/mechanical stability exempting surface modification by agents.

摘要

金属氢化物(MHs)最近被设计用于氢气传感器、可切换镜子、可充电电池和其他与能量存储和转换相关的应用。MHs 的需求,特别是快速的吸氢/脱氢动力学,使得它们的尺寸达到了纳米级。然而,纳米结构的 MHs 在吸氢/脱氢时通常会受到表面钝化和低聚集阻力结构稳定性的影响。本研究报告了一种名为微封装纳米约束的新策略,用于实现纳米-MHs 的局部合成,其具有超高的结构稳定性和优异的解吸动力学。通过简单的气固反应,在石墨烯片(GS)表面原位封装了单分散的 MgNiH 单晶纳米颗粒(NPs)。这种具有 ≈3nm 厚度的明确定义的 MgO 涂层有效地将 NPs 彼此分隔开来,以防止在吸氢/脱氢循环过程中聚集,从而实现了优异的热和机械稳定性。更有趣的是,MgO 层对气体具有优异的选择性渗透性,可防止 MgNiH 进一步氧化,同时可用于吸氢/脱氢。结果,脱氢反应的活化能极低(31.2kJmol)。这项研究为设计具有优异储氢活性和热/机械稳定性的纳米 MHs 提供了替代思路,无需通过表面改性剂。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验