Suppr超能文献

氧空位相关的表面芬顿化学:表面结构依赖性羟基自由基生成和底物依赖性反应活性。

Oxygen Vacancy Associated Surface Fenton Chemistry: Surface Structure Dependent Hydroxyl Radicals Generation and Substrate Dependent Reactivity.

机构信息

Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University , Wuhan 430079, P. R. China.

出版信息

Environ Sci Technol. 2017 May 16;51(10):5685-5694. doi: 10.1021/acs.est.7b00040. Epub 2017 Apr 27.

Abstract

Understanding the chemistry of hydrogen peroxide (HO) decomposition and hydroxyl radical (•OH) transformation on the surface molecular level is a great challenge for the application of heterogeneous Fenton system in the fields of chemistry, environmental, and life science. We report in this study a conceptual oxygen vacancy associated surface Fenton system without any metal ions leaching, exhibiting unprecedented surface chemistry based on the oxygen vacancy of electron-donor nature for heterolytic HO dissociation. By controlling the delicate surface structure of catalyst, this novel Fenton system allows the facile tuning of •OH existing form for targeted catalytic reactions with controlled reactivity and selectivity. On the model catalyst of BiOCl, the generated •OH tend to diffuse away from the (001) surface for the selective oxidation of dissolved pollutants in solution, but prefer to stay on the (010) surface, reacting with strongly adsorbed pollutants with high priority. These findings will extend the scope of Fenton catalysts via surface engineering and consolidate the fundamental theories of Fenton reactions for wide environmental applications.

摘要

理解过氧化氢 (HO) 分解和羟基自由基 (•OH) 在表面分子水平上的转化,对于异相芬顿系统在化学、环境和生命科学领域的应用是一个巨大的挑战。本研究报道了一种概念上的与氧空位相关的表面芬顿系统,不存在任何金属离子浸出,表现出前所未有的基于电子供体性质的氧空位的表面化学,用于异裂 HO 解离。通过控制催化剂的精细表面结构,这种新型芬顿系统允许轻松调节•OH 的存在形式,以进行具有可控反应性和选择性的靶向催化反应。在 BiOCl 的模型催化剂上,生成的•OH 倾向于从 (001) 表面扩散出去,以选择性氧化溶液中的溶解污染物,但更喜欢留在 (010) 表面,与具有高优先级的强吸附污染物反应。这些发现将通过表面工程扩展芬顿催化剂的范围,并为广泛的环境应用巩固芬顿反应的基本理论。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验