Suppr超能文献

用于氧化还原激活光声成像引导光热癌症治疗的生物响应性多金属氧酸盐簇

Bioresponsive Polyoxometalate Cluster for Redox-Activated Photoacoustic Imaging-Guided Photothermal Cancer Therapy.

机构信息

Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University , Shenzhen 518060, China.

School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology , Wuhan 430073, China.

出版信息

Nano Lett. 2017 May 10;17(5):3282-3289. doi: 10.1021/acs.nanolett.7b00995. Epub 2017 Apr 20.

Abstract

Although various types of imaging agents have been developed for photoacoustic (PA) imaging, relatively few imaging agents exhibit high selectivity/sensitivity to the tumor microenvironment for on-demand PA imaging and therapy. Herein, molybdenum-based polyoxometalate (POM) clusters with the highest oxidation state of Mo(VI) (denoted as Ox-POM) were designed as novel agents for redox-activated PA imaging-guided photothermal therapy. Capable of escaping from recognition and capture by the liver and spleen, these renal clearable clusters with ultrasmall size (hydrodynamic size: 1.9 nm) can accumulate in the tumor, self-assemble into larger nanoclusters at low pH, and are reduced to NIR absorptive agents in the tumor microenvironment. Studies in 4T1 tumor-bearing mice indicated that these clusters could be employed for bioresponsive PA imaging-guided tumor ablation in vivo. Our finding is expected to establish a new physicochemical paradigm for the design of PA imaging agents based on clusters, bridging the conventional concepts of "molecule" and "nano" in the bioimaging field.

摘要

虽然已经开发出各种类型的成像剂用于光声(PA)成像,但很少有成像剂对肿瘤微环境表现出高选择性/敏感性,用于按需 PA 成像和治疗。在此,设计了具有最高 Mo(VI)氧化态的钼基多金属氧酸盐(POM)簇(表示为 Ox-POM)作为新型用于氧化还原激活的 PA 成像引导光热治疗的试剂。这些具有超小尺寸(水动力尺寸:1.9nm)的可逃避肝脏和脾脏识别和捕获的肾脏可清除的簇能够在肿瘤中积累,在低 pH 值下自组装成较大的纳米簇,并在肿瘤微环境中还原为近红外吸收剂。在 4T1 荷瘤小鼠中的研究表明,这些簇可用于体内生物响应性 PA 成像引导的肿瘤消融。我们的发现有望为基于簇的 PA 成像剂设计建立新的物理化学范例,弥合生物成像领域中“分子”和“纳米”的传统概念。

相似文献

1
Bioresponsive Polyoxometalate Cluster for Redox-Activated Photoacoustic Imaging-Guided Photothermal Cancer Therapy.
Nano Lett. 2017 May 10;17(5):3282-3289. doi: 10.1021/acs.nanolett.7b00995. Epub 2017 Apr 20.
2
Mo C-Derived Polyoxometalate for NIR-II Photoacoustic Imaging-Guided Chemodynamic/Photothermal Synergistic Therapy.
Angew Chem Int Ed Engl. 2019 Dec 16;58(51):18641-18646. doi: 10.1002/anie.201910815. Epub 2019 Oct 31.
3
A simple POM clusters for in vivo NIR-II photoacoustic imaging-guided NIR-II photothermal therapy.
J Inorg Biochem. 2020 Aug;209:111121. doi: 10.1016/j.jinorgbio.2020.111121. Epub 2020 May 26.
6
Near-Infrared Semiconducting Polymer Brush and pH/GSH-Responsive Polyoxometalate Cluster Hybrid Platform for Enhanced Tumor-Specific Phototheranostics.
Angew Chem Int Ed Engl. 2018 Oct 22;57(43):14101-14105. doi: 10.1002/anie.201808074. Epub 2018 Oct 8.
7
Photonic cancer nanomedicine using the near infrared-II biowindow enabled by biocompatible titanium nitride nanoplatforms.
Nanoscale Horiz. 2019 Mar 1;4(2):415-425. doi: 10.1039/c8nh00299a. Epub 2018 Oct 29.
9
Targeted polydopamine nanoparticles enable photoacoustic imaging guided chemo-photothermal synergistic therapy of tumor.
Acta Biomater. 2017 Jan 1;47:124-134. doi: 10.1016/j.actbio.2016.10.010. Epub 2016 Oct 6.
10
pH-Responsive Fe(III)-Gallic Acid Nanoparticles for In Vivo Photoacoustic-Imaging-Guided Photothermal Therapy.
Adv Healthc Mater. 2016 Apr 6;5(7):772-80. doi: 10.1002/adhm.201500898. Epub 2016 Feb 4.

引用本文的文献

1
Recent Advances of Photothermal Materials for Biomedical Applications.
ACS Omega. 2025 Aug 21;10(34):38345-38358. doi: 10.1021/acsomega.5c03418. eCollection 2025 Sep 2.
2
Design and synthesis of a novel chiral photoacoustic probe and accurate imaging detection of hydrogen peroxide in vivo.
Anal Bioanal Chem. 2024 Sep;416(23):5205-5214. doi: 10.1007/s00216-024-05463-x. Epub 2024 Jul 30.
3
Application and design considerations of ROS-based nanomaterials in diabetic kidney disease.
Front Endocrinol (Lausanne). 2024 Apr 29;15:1351497. doi: 10.3389/fendo.2024.1351497. eCollection 2024.
4
Advanced nanomaterials for modulating Alzheimer's related amyloid aggregation.
Nanoscale Adv. 2022 Nov 21;5(1):46-80. doi: 10.1039/d2na00625a. eCollection 2022 Dec 20.
5
Ultra-small molybdenum-based nanodots as an antioxidant platform for effective treatment of periodontal disease.
Front Bioeng Biotechnol. 2022 Oct 10;10:1042010. doi: 10.3389/fbioe.2022.1042010. eCollection 2022.
6
Polyoxometalate-based nanocomposites for antitumor and antibacterial applications.
Nanoscale Adv. 2022 Aug 17;4(18):3689-3706. doi: 10.1039/d2na00391k. eCollection 2022 Sep 13.
7
GOx-Functionalized Platelet Membranes-Camouflaging Nanoreactors for Enhanced Multimodal Tumor Treatment.
Int J Nanomedicine. 2022 Jul 7;17:2979-2993. doi: 10.2147/IJN.S358138. eCollection 2022.
8
Biomedical Photoacoustic Imaging for Molecular Detection and Disease Diagnosis: "Always-On" and "Turn-On" Probes.
Adv Sci (Weinh). 2022 Sep;9(25):e2202384. doi: 10.1002/advs.202202384. Epub 2022 Jun 30.
9
Development of tungsten bronze nanorods for redox-enhanced photoacoustic imaging-guided photothermal therapy of tumors.
RSC Adv. 2018 Jul 26;8(47):26713-26719. doi: 10.1039/c8ra04096f. eCollection 2018 Jul 24.
10
Renal-clearable hyaluronic acid functionalized NaGdF nanodots with enhanced tumor accumulation.
RSC Adv. 2020 Apr 6;10(23):13872-13878. doi: 10.1039/c9ra08974h. eCollection 2020 Apr 1.

本文引用的文献

1
A photoacoustic approach for monitoring the drug release of pH-sensitive poly(β-amino ester)s.
J Mater Chem B. 2014 Oct 7;2(37):6271-6282. doi: 10.1039/c4tb00319e. Epub 2014 Aug 11.
2
A Multifunctional Platform for Tumor Angiogenesis-Targeted Chemo-Thermal Therapy Using Polydopamine-Coated Gold Nanorods.
ACS Nano. 2016 Nov 22;10(11):10404-10417. doi: 10.1021/acsnano.6b06267. Epub 2016 Nov 10.
3
DNA-Nanostructure-Gold-Nanorod Hybrids for Enhanced In Vivo Optoacoustic Imaging and Photothermal Therapy.
Adv Mater. 2016 Dec;28(45):10000-10007. doi: 10.1002/adma.201601710. Epub 2016 Sep 28.
5
Functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy.
Biomaterials. 2016 Oct;103:219-228. doi: 10.1016/j.biomaterials.2016.06.058. Epub 2016 Jun 27.
7
A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy.
Nat Nanotechnol. 2016 Aug;11(8):724-30. doi: 10.1038/nnano.2016.72. Epub 2016 May 16.
8
10
Self-assembled nanomaterials for photoacoustic imaging.
Nanoscale. 2016 Feb 7;8(5):2488-509. doi: 10.1039/c5nr07437a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验