文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于抗肿瘤和抗菌应用的基于多金属氧酸盐的纳米复合材料。

Polyoxometalate-based nanocomposites for antitumor and antibacterial applications.

作者信息

Chang Dening, Li Yanda, Chen Yuxuan, Wang Xiaojing, Zang Dejin, Liu Teng

机构信息

Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China

出版信息

Nanoscale Adv. 2022 Aug 17;4(18):3689-3706. doi: 10.1039/d2na00391k. eCollection 2022 Sep 13.


DOI:10.1039/d2na00391k
PMID:36133327
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9470027/
Abstract

Polyoxometalates (POMs), as emerging inorganic metal oxides, have been shown to have significant biological activity and great medicinal value. Nowadays, biologically active POM-based organic-inorganic hybrid materials have become the next generation of antibacterial and anticancer drugs because of their customizable molecular structures related to their highly enhanced antitumor activity and reduced toxicity to healthy cells. In this review, the current developed strategies with POM-based materials for the purpose of antibacterial and anticancer activities from different action principles inducing cell death and hyperpolarization, cell plasma membrane destruction, interference with bacterial respiratory chain and inhibiting bacterial growth are overviewed. Moreover, specific interactions between POM-based materials and biomolecules are highlighted for a better understanding of their antibacterial and anticancer mechanisms. POMs have great promise as next-generation antibacterial and anticancer drugs, and this review will provide a valuable systematic reference for the further development of POM-based nanomaterials.

摘要

多金属氧酸盐(POMs)作为新兴的无机金属氧化物,已被证明具有显著的生物活性和巨大的药用价值。如今,具有生物活性的基于POM的有机-无机杂化材料因其可定制的分子结构、高度增强的抗肿瘤活性以及对健康细胞毒性的降低,已成为下一代抗菌和抗癌药物。在这篇综述中,概述了目前基于POM的材料为实现抗菌和抗癌活性而采用的不同作用原理所开发的策略,这些原理包括诱导细胞死亡和超极化、破坏细胞质膜、干扰细菌呼吸链以及抑制细菌生长。此外,强调了基于POM的材料与生物分子之间的特定相互作用,以便更好地理解它们的抗菌和抗癌机制。POMs作为下一代抗菌和抗癌药物具有很大的潜力,这篇综述将为基于POM的纳米材料的进一步发展提供有价值的系统参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/0980b6fd32e4/d2na00391k-p6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/c96d1e8a23bf/d2na00391k-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/91d63a619cba/d2na00391k-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/a657483302aa/d2na00391k-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/28af0c0ad8e6/d2na00391k-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/3aac1022c73b/d2na00391k-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/edfed347a7db/d2na00391k-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/a872c78c9b32/d2na00391k-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/08f9dd8f756c/d2na00391k-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/1ef87b4eacda/d2na00391k-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/41ee72165d94/d2na00391k-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/8f7fd89908ef/d2na00391k-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/6f6c2823c0b8/d2na00391k-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/81ccf61c114b/d2na00391k-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/cb9d62cfbc2c/d2na00391k-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/ec427f5a9baa/d2na00391k-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/570394f77d0d/d2na00391k-p2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/cbfc319a72b9/d2na00391k-p3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/97e95e2abaca/d2na00391k-p4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/e0069c9fc673/d2na00391k-p5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/0980b6fd32e4/d2na00391k-p6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/c96d1e8a23bf/d2na00391k-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/91d63a619cba/d2na00391k-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/a657483302aa/d2na00391k-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/28af0c0ad8e6/d2na00391k-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/3aac1022c73b/d2na00391k-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/edfed347a7db/d2na00391k-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/a872c78c9b32/d2na00391k-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/08f9dd8f756c/d2na00391k-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/1ef87b4eacda/d2na00391k-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/41ee72165d94/d2na00391k-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/8f7fd89908ef/d2na00391k-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/6f6c2823c0b8/d2na00391k-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/81ccf61c114b/d2na00391k-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/cb9d62cfbc2c/d2na00391k-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/ec427f5a9baa/d2na00391k-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/570394f77d0d/d2na00391k-p2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/cbfc319a72b9/d2na00391k-p3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/97e95e2abaca/d2na00391k-p4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/e0069c9fc673/d2na00391k-p5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d5/9470027/0980b6fd32e4/d2na00391k-p6.jpg

相似文献

[1]
Polyoxometalate-based nanocomposites for antitumor and antibacterial applications.

Nanoscale Adv. 2022-8-17

[2]
Polyoxometalates as Potential Next-Generation Metallodrugs in the Combat Against Cancer.

Angew Chem Int Ed Engl. 2018-10-12

[3]
Polyoxometalate-Based Nanomaterials Toward Efficient Cancer Diagnosis and Therapy.

Chemistry. 2021-4-12

[4]
Polyoxometalate-Based Organic-Inorganic Hybrids as Antitumor Drugs.

Small. 2015-2-26

[5]
The antibacterial activity of polyoxometalates: structures, antibiotic effects and future perspectives.

Chem Commun (Camb). 2018-1-31

[6]
Polyoxometalates and their composites for antimicrobial applications: Advances, mechanisms and future prospects.

J Inorg Biochem. 2025-1

[7]
Decaniobate: The Fruit Fly of Niobium Polyoxometalate Chemistry.

Acc Chem Res. 2023-12-19

[8]
Hybrid polyoxometalates as post-functionalization platforms: from fundamentals to emerging applications.

Chem Soc Rev. 2019-12-3

[9]
Promising application of polyoxometalates in the treatment of cancer, infectious diseases and Alzheimer's disease.

J Biol Inorg Chem. 2022-8

[10]
Heterogeneous Catalysis of Polyoxometalate Based Organic-Inorganic Hybrids.

Materials (Basel). 2015-3-31

引用本文的文献

[1]
Study on the preparation, characterization, and antibacterial properties of keggin POMs functionalized carrageenan composite films.

Sci Rep. 2025-8-15

[2]
Design, Synthesis, and Electrical Performance of Three-Dimensional Hydrogen-Bonded Imidazole-Octamolybdenum-Oxo Cluster Supramolecular Materials.

Molecules. 2025-7-24

[3]
Nanosponge-Encapsulated Polyoxometalates: Unveiling the Multi-Faceted Potential Against Cancers and Metastases Through Comprehensive Preparation, Characterization, and Computational Exploration.

Pharmaceuticals (Basel). 2025-2-28

[4]
Beyond Chemistry: Investigating the Physical, Pharmacological, and Computational Aspects of Polyoxometalate Integrated Solid Lipid Nanoparticles for Cancer Treatment.

Int J Nanomedicine. 2025-1-10

[5]
Bioorthogonal chemistry of polyoxometalates - challenges and prospects.

Chem Sci. 2024-2-26

[6]
In vivo toxicity evaluation of a polyoxotungstate nanocluster as a promising contrast agent for computed tomography.

Sci Rep. 2023-6-5

[7]
Regioselective protein oxidative cleavage enabled by enzyme-like recognition of an inorganic metal oxo cluster ligand.

Nat Commun. 2023-1-30

[8]
A Polyoxometalate-Encapsulated Metal-Organic Framework Nanoplatform for Synergistic Photothermal-Chemotherapy and Anti-Inflammation of Ovarian Cancer.

Molecules. 2022-11-30

本文引用的文献

[1]
Bacteria-mediated tumor immunotherapy photothermally-programmed PD1 expression.

Nanoscale Adv. 2022-2-7

[2]
pH-responsive hollow Fe-gallic acid coordination polymer for multimodal synergistic-therapy and MRI of cancer.

Nanoscale Adv. 2021-11-8

[3]
Novel monodisperse FePt nanocomposites for T2-weighted magnetic resonance imaging: biomedical theranostics applications.

Nanoscale Adv. 2021-11-23

[4]
Magnetic and near-infrared-II fluorescence Au-Gd nanoclusters for imaging-guided sensitization of tumor radiotherapy.

Nanoscale Adv. 2022-3-2

[5]
Metallodrugs in cancer nanomedicine.

Chem Soc Rev. 2022-4-4

[6]
Thermoresponsive and Self-Healing Hydrogel Based on Chitosan Derivatives and Polyoxometalate as an Antibacterial Coating.

Biomacromolecules. 2022-3-14

[7]
NMR Relaxivities of Paramagnetic Lanthanide-Containing Polyoxometalates.

Molecules. 2021-12-10

[8]
A supramolecular complex based on a Gd-containing polyoxometalate and food-borne peptide for MRI/CT imaging and NIR-triggered photothermal therapy.

Dalton Trans. 2021-6-15

[9]
Bacterial hyperpolarization modulated by polyoxometalates for solutions of antibiotic resistance.

J Inorg Biochem. 2021-7

[10]
Hybrid Polyoxometalate Salt Adhesion by Butyltin Functionalization.

ACS Appl Mater Interfaces. 2021-4-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索