Suppr超能文献

无线传感器与执行器网络的高效执行器恢复范例

Efficient Actor Recovery Paradigm for Wireless Sensor and Actor Networks.

作者信息

Mahjoub Reem K, Elleithy Khaled

机构信息

Department of Computer Science, University of Bridgeport, 126 Park Avenue, Bridgeport, CT 06604, USA.

出版信息

Sensors (Basel). 2017 Apr 14;17(4):858. doi: 10.3390/s17040858.

Abstract

The actor nodes are the spine of wireless sensor and actor networks (WSANs) that collaborate to perform a specific task in an unverified and uneven environment. Thus, there is a possibility of high failure rate in such unfriendly scenarios due to several factors such as power consumption of devices, electronic circuit failure, software errors in nodes or physical impairment of the actor nodes and inter-actor connectivity problem. Therefore, it is extremely important to discover the failure of a cut-vertex actor and network-disjoint in order to improve the Quality-of-Service (QoS). In this paper, we propose an Efficient Actor Recovery (EAR) paradigm to guarantee the contention-free traffic-forwarding capacity. The EAR paradigm consists of a Node Monitoring and Critical Node Detection (NMCND) algorithm that monitors the activities of the nodes to determine the critical node. In addition, it replaces the critical node with backup node prior to complete node-failure which helps balancing the network performance. The packets are handled using Network Integration and Message Forwarding (NIMF) algorithm that determines the source of forwarding the packets; either from actor or sensor. This decision-making capability of the algorithm controls the packet forwarding rate to maintain the network for a longer time. Furthermore, for handling the proper routing strategy, Priority-Based Routing for Node Failure Avoidance (PRNFA) algorithm is deployed to decide the priority of the packets to be forwarded based on the significance of information available in the packet. To validate the effectiveness of the proposed EAR paradigm, the proposed algorithms were tested using OMNET++ simulation.

摘要

Actor节点是无线传感器与Actor网络(WSAN)的核心,它们协同工作,在未经验证且不均衡的环境中执行特定任务。因此,在这种恶劣场景下,由于设备功耗、电子电路故障、节点软件错误、Actor节点物理损坏以及Actor节点间连接问题等多种因素,存在较高的故障率。所以,发现割点Actor和网络不连通的故障对于提高服务质量(QoS)极为重要。在本文中,我们提出了一种高效Actor恢复(EAR)范式,以保证无竞争的流量转发能力。EAR范式由节点监测与关键节点检测(NMCND)算法组成,该算法监测节点活动以确定关键节点。此外,它在节点完全故障之前用备份节点替换关键节点,这有助于平衡网络性能。数据包使用网络集成与消息转发(NIMF)算法进行处理,该算法确定数据包的转发源,即来自Actor还是传感器。该算法的这种决策能力控制数据包转发速率,以使网络维持更长时间。此外,为了处理适当的路由策略,部署了基于优先级的节点故障避免路由(PRNFA)算法,根据数据包中可用信息的重要性来决定要转发数据包的优先级。为了验证所提出的EAR范式的有效性,使用OMNET++仿真对所提出的算法进行了测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1e/5424735/e3942aa1b426/sensors-17-00858-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验