Department of Radiology, The University of Chicago, Chicago, IL, USA.
Department of Radiation Oncology, The University of Texas Medical Branch, Galveston, TX, USA.
Med Phys. 2017 Jul;44(7):3686-3694. doi: 10.1002/mp.12282. Epub 2017 May 22.
To determine whether the addition of standardized uptake value (SUV) from PET scans to CT lung texture features could improve a radiomics-based model of radiation pneumonitis (RP) diagnosis in patients undergoing radiotherapy.
Anonymized data from 96 esophageal cancer patients (18 RP-positive cases of Grade ≥ 2) were collected including pre-therapy PET/CT scans, pre-/post-therapy diagnostic CT scans and RP status. Twenty texture features (first-order, fractal, Laws' filter and gray-level co-occurrence matrix) were calculated from diagnostic CT scans and compared in anatomically matched regions of the lung. Classifier performance (texture, SUV, or combination) was assessed by calculating the area under the receiver operating characteristic curve (AUC). For each texture feature, logistic regression classifiers consisting of the average change in texture feature value and the pre-therapy SUV standard deviation (SUV ) were created and compared with the texture feature as a lone classifier using ANOVA with correction for multiple comparisons (P < 0.0025).
While clinical parameters (mean lung dose, smoking history, tumor location) were not significantly different among patients with and without symptomatic RP, SUV and texture parameters were significantly associated with RP status. AUC for single-texture feature classifiers alone ranged from 0.58 to 0.81 and 0.53 to 0.71 in high-dose (≥ 30 Gy) and low-dose (< 10 Gy) regions of the lungs, respectively. AUC for SUV alone was 0.69 (95% confidence interval: 0.54-0.83). Adding SUV into a logistic regression model significantly improved model fit for 18, 14 and 11 texture features and increased the mean AUC across features by 0.08, 0.06, and 0.04 in the low-, medium-, and high-dose regions, respectively.
Addition of SUV to a single-texture feature improves classifier performance on average, but the improvement is smaller in magnitude when SUV is added to an already effective classifier using texture alone. These findings demonstrate the potential for more accurate assessment of RP using information from multiple imaging modalities.
确定 PET 扫描中的标准化摄取值 (SUV) 是否可以与 CT 肺纹理特征相结合,从而改善放疗患者放射性肺炎 (RP) 诊断的基于放射组学模型。
本研究纳入了 96 例食管癌患者(18 例 RP 阳性,≥ 2 级)的匿名数据,包括治疗前的 PET/CT 扫描、治疗前/后诊断 CT 扫描和 RP 状态。从诊断 CT 扫描中计算了 20 个纹理特征(一阶、分形、Laws 滤波器和灰度共生矩阵),并在肺的解剖匹配区域进行了比较。通过计算受试者工作特征曲线(ROC)的曲线下面积(AUC)来评估分类器性能(纹理、SUV 或组合)。对于每个纹理特征,创建了由纹理特征值的平均变化和治疗前 SUV 标准差(SUV)组成的逻辑回归分类器,并与作为单独分类器的纹理特征进行比较,采用具有多重比较校正的方差分析(P < 0.0025)。
虽然有症状 RP 患者与无症状 RP 患者之间的临床参数(平均肺剂量、吸烟史、肿瘤位置)无显著差异,但 SUV 和纹理参数与 RP 状态显著相关。单独使用纹理特征分类器的 AUC 范围分别为高剂量(≥ 30 Gy)和低剂量(< 10 Gy)肺区的 0.58 至 0.81 和 0.53 至 0.71。单独使用 SUV 的 AUC 为 0.69(95%置信区间:0.54-0.83)。将 SUV 纳入逻辑回归模型可显著改善 18、14 和 11 个纹理特征的模型拟合度,并分别将低、中、高剂量区域的特征平均 AUC 提高 0.08、0.06 和 0.04。
将 SUV 添加到单个纹理特征中可平均提高分类器性能,但当 SUV 与仅使用纹理的已有有效分类器结合使用时,其改善幅度较小。这些发现表明,使用来自多种成像模式的信息,有可能更准确地评估 RP。