文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于放射组学的方法鉴定肺部放射性正常组织损伤。

Radiomics approach for identifying radiation-induced normal tissue toxicity in the lung.

机构信息

Department of Radiation Oncology, University of California, Irvine, CA, 92697-2695, USA.

Dept. of Radiation Oncology, University of California, Irvine, CA, 92617-2695, USA.

出版信息

Sci Rep. 2024 Oct 16;14(1):24256. doi: 10.1038/s41598-024-75993-y.


DOI:10.1038/s41598-024-75993-y
PMID:39415029
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11484882/
Abstract

The rapidly evolving field of radiomics has shown that radiomic features are able to capture characteristics of both tumor and normal tissue that can be used to make accurate and clinically relevant predictions. In the present study we sought to determine if radiomic features can characterize the adverse effects caused by normal tissue injury as well as identify if human embryonic stem cell (hESC) derived extracellular vesicle (EV) treatment can resolve certain adverse complications. A cohort of 72 mice (n = 12 per treatment group) were exposed to X-ray radiation to the whole lung (3 × 8 Gy) or to the apex of the right lung (3 × 12 Gy), immediately followed by retro-orbital injection of EVs. Cone-Beam Computed Tomography images were acquired before and 2 weeks after treatment. In total, 851 radiomic features were extracted from the whole lungs and < 20 features were selected to train and validate a series of random forest classification models trained to predict radiation status, EV status and treatment group. It was found that all three classification models achieved significantly high prediction accuracies on a validation subset of the dataset (AUCs of 0.91, 0.86 and 0.80 respectively). In the locally irradiated lung, a significant difference between irradiated and unirradiated groups as well as an EV sparing effect were observed in several radiomic features that were not seen in the unirradiated lung (including wavelet-LLH Kurtosis, wavelet HLL Large Area High Gray Level Emphasis, and Gray Level Non-Uniformity). Additionally, a radiation difference was not observed in a secondary comparison cohort, but there was no impact of imaging machine parameters on the radiomic signature of unirradiated mice. Our data demonstrate that radiomics has the potential to identify radiation-induced lung injury and could be applied to predict therapeutic efficacy at early timepoints.

摘要

放射组学是一个快速发展的领域,它表明放射组学特征能够捕捉肿瘤和正常组织的特征,从而能够做出准确的、具有临床相关性的预测。在本研究中,我们试图确定放射组学特征是否能够描述正常组织损伤引起的不良反应,以及是否可以识别人胚胎干细胞(hESC)衍生的细胞外囊泡(EV)治疗是否可以解决某些不良反应。将 72 只小鼠(每组 12 只)分为三组:一组接受全肺 X 射线照射(3×8 Gy),一组接受右肺尖部 X 射线照射(3×12 Gy),照射后立即经眼眶后注射 EV。治疗前和治疗后 2 周采集锥束 CT 图像。总共从全肺中提取了 851 个放射组学特征,并选择了<20 个特征来训练和验证一系列随机森林分类模型,这些模型旨在预测放射状态、EV 状态和治疗组。结果发现,所有三个分类模型在数据集的验证子集上均达到了显著的高预测准确率(AUC 分别为 0.91、0.86 和 0.80)。在局部照射的肺中,与未照射组相比,照射组的多个放射组学特征存在显著差异,而在未照射肺中则没有这些特征(包括小波-LLH 峰度、小波 HLL 大面积高灰度强调和灰度不均匀性)。此外,在二次比较队列中未观察到放射差异,但成像机器参数对未照射小鼠的放射组学特征没有影响。我们的数据表明,放射组学有可能识别放射性肺损伤,并且可以应用于预测早期治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cc5/11484882/5139f3f3b558/41598_2024_75993_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cc5/11484882/9dbd47c8051c/41598_2024_75993_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cc5/11484882/e7a9977f7350/41598_2024_75993_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cc5/11484882/e79d7b46c6cb/41598_2024_75993_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cc5/11484882/1ac96020dd57/41598_2024_75993_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cc5/11484882/5b63c0d1eb7e/41598_2024_75993_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cc5/11484882/73cd740330db/41598_2024_75993_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cc5/11484882/67afac36832c/41598_2024_75993_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cc5/11484882/5139f3f3b558/41598_2024_75993_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cc5/11484882/9dbd47c8051c/41598_2024_75993_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cc5/11484882/e7a9977f7350/41598_2024_75993_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cc5/11484882/e79d7b46c6cb/41598_2024_75993_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cc5/11484882/1ac96020dd57/41598_2024_75993_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cc5/11484882/5b63c0d1eb7e/41598_2024_75993_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cc5/11484882/73cd740330db/41598_2024_75993_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cc5/11484882/67afac36832c/41598_2024_75993_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cc5/11484882/5139f3f3b558/41598_2024_75993_Fig8_HTML.jpg

相似文献

[1]
Radiomics approach for identifying radiation-induced normal tissue toxicity in the lung.

Sci Rep. 2024-10-16

[2]
Radiomics approach for identifying radiation-induced normal tissue toxicity in the lung.

Res Sq. 2024-2-23

[3]
Characterisation of quantitative imaging biomarkers for inflammatory and fibrotic radiation-induced lung injuries using preclinical radiomics.

Radiother Oncol. 2024-3

[4]
Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.

EBioMedicine. 2021-7

[5]
Habitat radiomics analysis for progression free survival and immune-related adverse reaction prediction in non-small cell lung cancer treated by immunotherapy.

J Transl Med. 2025-4-3

[6]
Identification of reproducible radiomic features from on-board volumetric images: A multi-institutional phantom study.

Med Phys. 2023-9

[7]
Survival prediction of non-small cell lung cancer patients using radiomics analyses of cone-beam CT images.

Radiother Oncol. 2017-6

[8]
Clinical, Dosimetric and Radiomic Features Predictive of Lung Toxicity After (Chemo)Radiotherapy.

Clin Lung Cancer. 2025-3

[9]
Patient-specific deep learning model to enhance 4D-CBCT image for radiomics analysis.

Phys Med Biol. 2022-4-1

[10]
Radiomics for prediction of radiation-induced lung injury and oncologic outcome after robotic stereotactic body radiotherapy of lung cancer: results from two independent institutions.

Radiat Oncol. 2021-4-16

引用本文的文献

[1]
Machine learning-driven imaging data for early prediction of lung toxicity in breast cancer radiotherapy.

Sci Rep. 2025-5-27

本文引用的文献

[1]
Characterisation of quantitative imaging biomarkers for inflammatory and fibrotic radiation-induced lung injuries using preclinical radiomics.

Radiother Oncol. 2024-3

[2]
CT radiomics for predicting the prognosis of patients with stage II rectal cancer during the three-year period after surgery, chemotherapy and radiotherapy.

Heliyon. 2023-12-27

[3]
Pretreatment radiomic biomarker for immunotherapy responder prediction in stage IB-IV NSCLC (LCDigital-IO Study): a multicenter retrospective study.

J Immunother Cancer. 2023-10

[4]
Radiomics and Radiogenomics in Preclinical Imaging on Murine Models: A Narrative Review.

J Pers Med. 2023-7-29

[5]
Exosomes: Diagnostic and Therapeutic Implications in Cancer.

Pharmaceutics. 2023-5-11

[6]
An interactive murine single-cell atlas of the lung responses to radiation injury.

Nat Commun. 2023-4-28

[7]
Prognostic Prediction of Cancer Based on Radiomics Features of Diagnostic Imaging: The Performance of Machine Learning Strategies.

J Digit Imaging. 2023-6

[8]
Radiomics analysis in medical imaging research.

J Med Radiat Sci. 2023-3

[9]
Radiomics for Predicting Lung Cancer Outcomes Following Radiotherapy: A Systematic Review.

Clin Oncol (R Coll Radiol). 2022-3

[10]
Computed tomography-based radiomics decodes prognostic and molecular differences in interstitial lung disease related to systemic sclerosis.

Eur Respir J. 2022-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索