Duke University School of Medicine, Durham, North Carolina.
Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington.
Int J Radiat Oncol Biol Phys. 2018 Nov 15;102(4):1255-1264. doi: 10.1016/j.ijrobp.2018.05.051. Epub 2018 Jun 1.
To apply a previously designed framework for predicting radiation pneumonitis by using pretreatment lung function heterogeneity metrics, anatomic dosimetry, and functional lung dosimetry derived from 2 imaging modalities within the same cohort.
Treatment planning computed tomography (CT) scans were co-registered with pretreatment [Tc] macro-aggregated albumin perfusion single-photon positron emission tomography (SPECT)/CT scans and [F]-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT scans of 28 patients who underwent definitive thoracic radiation. Clinical radiation pneumonitis was defined as grade ≥2 (Common Terminology Criteria for Adverse Events, v. 4). Anatomic dosimetric parameters (mean lung dose [MLD], volume receiving ≥20 Gy [V20]) were collected from treatment planning scans. Baseline functional lung heterogeneity parameters and functional lung dose-volume parameters were calculated from pretreatment SPECT/CT and FDG PET/CT scans. Functional heterogeneity parameters calculated over the tumor-subtracted lung included skewness, kurtosis, and coefficient of variation from perfusion SPECT and FDG PET and the global lung parenchymal glycolysis and mean standardized uptake value from FDG PET. Functional dose-volume parameters calculated in regions of highly functional lung, defined on perfusion (p) or SUV (s) images, included mean lung dose (pMLD, sMLD) and V20 (pV20, sV20). Fraction of integral lung function receiving ≥20 Gy (pF20, sF20) was also calculated. Equivalent doses in 2 Gy per fraction (EQD2) were calculated to account for differences in treatment regimens and dose fractionation (EQD2).
Two anatomic dosimetric parameters (MLD, V20) and 4 functional dosimetric parameters (pMLD, pV20, pF20, sF20) were significant predictors of grade ≥2 pneumonitis (area under the curve >0.84; P < .05). Dose-independent functional lung heterogeneity metrics were not associated with pneumonitis incidence. At thresholds of 100% sensitivity and 65% to 91% specificity, corresponding to maximum prediction accuracy for pneumonitis, these parameters had the following cutoff values: MLD = 13.6 Gy EQD2, V20 = 25%, pMLD = 13.2 Gy EQD2, pV20 = 15%, pF20 = 17%, and sF20 = 25%. Significant parameters MLD, V20, pF20, and sF20 were not cross-correlated to significant parameters pMLD and pV20, indicating that they may offer independently predictive information (Spearman ρ < 0.7).
We reported differences in anatomic and functional lung dosimetry between patients with and without pneumonitis in this limited patient cohort. Adding selected independent functional lung parameters may risk stratify patients for pneumonitis. Validation studies are ongoing in a prospective functional lung avoidance trial at our institution.
利用同一队列中两种成像模式获得的预处理肺功能异质性指标、解剖剂量学和功能肺剂量学,应用先前设计的预测放射性肺炎的框架。
对 28 例接受根治性胸部放疗的患者的治疗计划 CT 扫描与预处理 [Tc] 巨聚合白蛋白灌注单光子正电子发射断层扫描(SPECT)/CT 扫描和 [F]-氟脱氧葡萄糖(FDG)正电子发射断层扫描(PET)/CT 进行了配准。临床放射性肺炎定义为≥2 级(不良事件通用术语标准,版本 4)。从治疗计划扫描中收集解剖剂量学参数(平均肺剂量[MLD]、接受≥20 Gy 的体积[V20])。从预处理 SPECT/CT 和 FDG PET/CT 扫描中计算出基线功能肺异质性参数和功能肺剂量-体积参数。从肿瘤减去的肺中计算功能异质性参数,包括灌注 SPECT 和 FDG PET 的偏度、峰度和变异系数,以及 FDG PET 的全肺实质糖酵解和平均标准化摄取值。在灌注(p)或 SUV(s)图像上定义的高功能肺区域中计算功能剂量-体积参数,包括平均肺剂量(pMLD、sMLD)和 V20(pV20、sV20)。还计算了接受≥20 Gy 的积分肺功能分数(pF20、sF20)。为了考虑治疗方案和剂量分割的差异,计算了 2 Gy 等效剂量(EQD2)。
两个解剖剂量学参数(MLD、V20)和 4 个功能剂量学参数(pMLD、pV20、pF20、sF20)是≥2 级肺炎的显著预测因子(曲线下面积>0.84;P<.05)。与肺炎发生率无关的剂量独立功能肺异质性指标无相关性。在灵敏度为 100%和特异性为 65%至 91%的阈值下,对应于肺炎最大预测准确性,这些参数的截断值如下:MLD=13.6 Gy EQD2,V20=25%,pMLD=13.2 Gy EQD2,pV20=15%,pF20=17%,sF20=25%。显著参数 MLD、V20、pF20 和 sF20 与显著参数 pMLD 和 pV20 没有交叉相关,表明它们可能提供独立的预测信息(Spearman ρ<0.7)。
在这个有限的患者队列中,我们报告了有和没有肺炎的患者之间的解剖和功能肺剂量学差异。添加选定的独立功能肺参数可能会对肺炎进行风险分层。我们正在我们机构的一项前瞻性功能性肺回避试验中进行验证研究。