Suppr超能文献

弥合诊断组织病理学与图像分析之间的语义鸿沟。

Bridging the Semantic Gap Between Diagnostic Histopathology and Image Analysis.

作者信息

Traore Lamine, Kergosien Yannick, Racoceanu Daniel

机构信息

Sorbonne Universités, UPMC Univ Paris 6, INSERM, Univ Paris 13, Sorbonne Paris Cité, Laboratoire d'Informatique Médicale et Ingénierie des Connaissances en eSanté (LIMICS), 15 rue de l'école de médecine, Paris, France.

Sorbonne Universités, UPMC Univ Paris 6, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale (LIB), 75013, Paris, France.

出版信息

Stud Health Technol Inform. 2017;235:436-440.

Abstract

With the wider acceptance of Whole Slide Images (WSI) in histopathology domain, automatic image analysis algorithms represent a very promising solution to support pathologist's laborious tasks during the diagnosis process, to create a quantification-based second opinion and to enhance inter-observer agreement. In this context, reference vocabularies and formalization of the associated knowledge are especially needed to annotate histopathology images with labels complying with semantic standards. In this work, we elaborate a sustainable triptych able to bridge the gap between pathologists and image analysis scientists. The proposed paradigm is structured along three components: i) extracting a relevant semantic repository from the College of American Pathologists (CAP) organ-specific Cancer Checklists and associated Protocols (CC&P); ii) identifying imaging formalized knowledge issued from effective histopathology imaging methods highlighted by recent Digital Pathology (DP) contests and iii) proposing a formal representation of the imaging concepts and functionalities issued from major biomedical imaging software (MATLAB, ITK, ImageJ). Since the first step i) has been the object of a recent publication of our team, this study focuses on the steps ii) and iii). Our hypothesis is that the management of available semantic resources concerning the histopathology imaging tasks associated with effective methods highlighted by the recent DP challenges will facilitate the integration of WSI in clinical routine and support new generation of DP protocols.

摘要

随着全切片图像(WSI)在组织病理学领域得到更广泛的接受,自动图像分析算法成为一种非常有前景的解决方案,可在诊断过程中协助病理学家完成繁重的任务,提供基于量化的第二意见,并提高观察者间的一致性。在此背景下,尤其需要参考词汇表和相关知识的形式化,以便用符合语义标准的标签对组织病理学图像进行注释。在这项工作中,我们精心构建了一个可持续的三联体,能够弥合病理学家和图像分析科学家之间的差距。所提出的范式由三个组件构成:i)从美国病理学家学会(CAP)的器官特异性癌症检查表和相关协议(CC&P)中提取相关语义库;ii)识别由近期数字病理学(DP)竞赛突出的有效组织病理学成像方法所产生的成像形式化知识;iii)提出主要生物医学成像软件(MATLAB、ITK、ImageJ)所产生的成像概念和功能的形式化表示。由于第一步i)是我们团队近期一篇出版物的主题,本研究聚焦于步骤ii)和iii)。我们的假设是,管理与近期DP挑战所突出的有效方法相关的组织病理学成像任务的可用语义资源,将有助于WSI在临床常规中的整合,并支持新一代DP协议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验