Suppr超能文献

面向语义驱动的高内涵图像分析:数字组织病理学中用于有丝分裂检测的操作实例。

Towards semantic-driven high-content image analysis: an operational instantiation for mitosis detection in digital histopathology.

机构信息

Sorbonne Universités, UPMC Univ Paris 06, LIB - UMR 7371 - UMR_S 1146, F-75013 Paris, France; CNRS, UMR 7371, Laboratoire d'Imagerie Biomédicale, F-75013 Paris, France; INSERM, UMR_S 1146, Laboratoire d'Imagerie Biomédicale, F-75013 Paris, France.

Sorbonne Universités, UPMC Pars 06, UH Pitié-Salpêtrière-CFx, Department of Pathology APHP, UIMAP, F-75013 Paris, France.

出版信息

Comput Med Imaging Graph. 2015 Jun;42:2-15. doi: 10.1016/j.compmedimag.2014.09.004. Epub 2014 Oct 2.

Abstract

This study concerns a novel symbolic cognitive vision framework emerged from the Cognitive Microscopy (MICO(1)) initiative. MICO aims at supporting the evolution towards digital pathology, by studying cognitive clinical-compliant protocols involving routine virtual microscopy. We instantiate this paradigm in the case of mitotic count as a component of breast cancer grading in histopathology. The key concept of our approach is the role of the semantics as driver of the whole slide image analysis protocol. All the decisions being taken into a semantic and formal world, MICO represents a knowledge-driven platform for digital histopathology. Therefore, the core of this initiative is the knowledge representation and the reasoning. Pathologists' knowledge and strategies are used to efficiently guide image analysis algorithms. In this sense, hard-coded knowledge, semantic and usability gaps are to be reduced by a leading, active role of reasoning and of semantic approaches. Integrating ontologies and reasoning in confluence with modular imaging algorithms, allows the emergence of new clinical-compliant protocols for digital pathology. This represents a promising way to solve decision reproducibility and traceability issues in digital histopathology, while increasing the flexibility of the platform and pathologists' acceptance, the one always having the legal responsibility in the diagnosis process. The proposed protocols open the way to increasingly reliable cancer assessment (i.e. multiple slides per sample analysis), quantifiable and traceable second opinion for cancer grading, and modern capabilities for cancer research support in histopathology (i.e. content and context-based indexing and retrieval). Last, but not least, the generic approach introduced here is applicable for number of additional challenges, related to molecular imaging and, in general, to high-content image exploration.

摘要

本研究涉及一种源于认知显微镜(MICO(1))计划的新型符号认知视觉框架。MICO 的目标是通过研究涉及常规虚拟显微镜的认知临床兼容协议,支持向数字病理学的发展。我们在组织学中的乳腺癌分级的有丝分裂计数作为一个组件的情况下实例化了这种范例。我们方法的关键概念是语义作为整个幻灯片图像分析协议的驱动因素的作用。所有决策都是在语义和形式化的世界中做出的,MICO 代表了数字组织病理学的知识驱动平台。因此,这个计划的核心是知识表示和推理。病理学家的知识和策略用于有效地指导图像分析算法。从这个意义上说,通过推理和语义方法的主导、积极作用,可以减少硬编码知识、语义和可用性差距。将本体论和推理与模块化成像算法集成在一起,允许为数字病理学出现新的临床兼容协议。这代表了解决数字组织病理学中决策可重复性和可追溯性问题的一种很有前途的方法,同时提高了平台的灵活性和病理学家的接受程度,因为病理学家在诊断过程中始终承担着法律责任。所提出的协议为癌症评估(即每个样本分析多个切片)、癌症分级的可量化和可追溯的第二意见以及组织病理学中癌症研究支持的现代功能(即基于内容和上下文的索引和检索)开辟了道路。最后但同样重要的是,这里介绍的通用方法可应用于与分子成像相关的许多其他挑战,以及一般的高内涵图像探索。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验