Suppr超能文献

基于低样本复杂度学习生物分子网络的潜在变量高斯图形模型。

Learning Latent Variable Gaussian Graphical Model for Biomolecular Network with Low Sample Complexity.

作者信息

Wang Yanbo, Liu Quan, Yuan Bo

机构信息

Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

Comput Math Methods Med. 2016;2016:2078214. doi: 10.1155/2016/2078214. Epub 2016 Oct 23.

Abstract

Learning a Gaussian graphical model with latent variables is ill posed when there is insufficient sample complexity, thus having to be appropriately regularized. A common choice is convex plus nuclear norm to regularize the searching process. However, the best estimator performance is not always achieved with these additive convex regularizations, especially when the sample complexity is low. In this paper, we consider a concave additive regularization which does not require the strong irrepresentable condition. We use concave regularization to correct the intrinsic estimation biases from Lasso and nuclear penalty as well. We establish the proximity operators for our concave regularizations, respectively, which induces sparsity and low rankness. In addition, we extend our method to also allow the decomposition of fused structure-sparsity plus low rankness, providing a powerful tool for models with temporal information. Specifically, we develop a nontrivial modified alternating direction method of multipliers with at least local convergence. Finally, we use both synthetic and real data to validate the excellence of our method. In the application of reconstructing two-stage cancer networks, "the Warburg effect" can be revealed directly.

摘要

当样本复杂度不足时,学习带有潜在变量的高斯图形模型是不适定的,因此必须进行适当的正则化。一种常见的选择是使用凸正则化加上核范数来规范搜索过程。然而,这些加法凸正则化并不总是能实现最佳估计器性能,特别是在样本复杂度较低时。在本文中,我们考虑一种不需要强不可表示条件的凹加法正则化。我们使用凹正则化来校正来自套索(Lasso)和核惩罚的内在估计偏差。我们分别为凹正则化建立了邻近算子,这些算子会导致稀疏性和低秩性。此外,我们将方法扩展到还允许融合结构稀疏性加上低秩性的分解,为具有时间信息的模型提供了一个强大的工具。具体而言,我们开发了一种至少具有局部收敛性的非平凡修正交替方向乘子法。最后,我们使用合成数据和真实数据来验证我们方法的卓越性。在重建两阶段癌症网络的应用中,可以直接揭示“瓦伯格效应”。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fca/5097857/f2eaac9569e0/CMMM2016-2078214.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验