Suppr超能文献

Functional and structural differences in human and rat-derived insulin receptors: characterization of the beta-subunit kinase activity.

作者信息

Brillon D J, Henry R R, Klein H H, Olefsky J M, Freidenberg G R

机构信息

Department of Medicine, University of California-San Diego, La Jolla 92093.

出版信息

Endocrinology. 1988 Oct;123(4):1837-47. doi: 10.1210/endo-123-4-1837.

Abstract

We studied the kinase activity of partially purified insulin receptor preparations from various rat and human tissues. Time courses for in vitro autophosphorylation were determined, and times to reach half-maximal (t1/2 max) and maximal (tmax) 32P incorporation were compared. Insulin receptors from rat muscle, liver, and fat had a t1/2 max of 7-10 min and a tmax of 60 min; human-derived insulin receptors had a t1/2 max in excess of 30 min and a tmax of 120 min. A spectrum of autophosphorylation time courses was present in human tissues; placenta-derived receptors exhibited a t1/2 max of 13 min while receptors from monocytes and fibroblasts had t1/2 max values of 60 and 80 min, respectively. The ATP Km for autophosphorylation of human-derived receptors was 5-fold greater than that of rat-derived receptors (266 +/- 27 vs. 48 +/- 8 microM, respectively). In contrast, when the receptors were first maximally prephosphorylated, the ATP Km values for substrate phosphorylation of human- and rat-derived receptors were equivalent (12.5 and 11.4 microM). Kact values for Mn were comparable in both human- and rat-derived adipocyte receptors. In addition to the functional differences between species, the apparent mol wt of the beta-subunit of rat-derived receptors (96,000) was consistently greater than that of human-derived receptor beta-subunits (93,000). In contrast to these in vitro findings, the ability of insulin to stimulate receptor kinase activity in isolated adipocytes was rapid, with a maximal effect by seconds. This was comparable for both rat and human tissues, suggesting that the in vitro autophosphorylation differences may not govern kinase activity in vivo.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验