Mikhailova Alexandra, Sunkara Naveena, McQuillen Patrick S
Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA.
Dev Neurosci. 2017;39(1-4):171-181. doi: 10.1159/000460815. Epub 2017 Apr 22.
Cellular targets of neonatal hypoxia-ischemia (HI) include both oligodendrocyte and neuronal lineages with differences in the patterns of vulnerable cells depending upon the developmental stage at which the injury occurs. Injury to the developing white matter is a characteristic feature of human preterm brain injury. Data are accumulating, however, for neuronal injury in the developing cerebral cortex. In the most widely used rodent model of preterm HI brain injury, conflicting data have been reported regarding the sensitivity of subplate neurons to early neonatal HI, with some reports of selective vulnerability and others that find no increased loss of subplate neurons in comparison with other cortical layers. Methods used to identify subplate neurons and quantify their numbers vary across studies.
To use recently developed cortical layer-specific markers quantified with definitive stereologic methods to determine the magnitude and specificity of subplate neuron cell loss following neonatal HI in a rodent model.
Postnatal day 2 (P2) rats underwent right common carotid artery coagulation followed by 2-3 h of hypoxia (5.6% oxygen). Categorically moderately injured brains were stained with subplate and cortical layer III-V markers (Complexin3 and Foxp1, respectively) at P8 and P21 (Foxp1 only). An Optical Fractionator was used to quantify subplate and middle/lower cortical neuronal numbers and these were compared across groups (naive control, hypoxia hemisphere, and HI hemisphere).
Following HI at P2 in rats, the total Complexin3-expressing subplate neuron number decreases significantly in the HI hemisphere compared with naive controls or hypoxia alone (HI vs. control 26,747 ± 7,952 vs. 35,468 ± 8,029, p = 0.04; HI vs. hypoxia, 26,747 ± 7,952 vs. 40,439 ± 7,363, p = 0.003). In contrast, the total Foxp1-expressing layer III-V cell number did not differ across the 3 conditions at P8 (HI vs. control 1,195,085 ± 436,609 vs. 1,234,640 ± 178,540, p = 0.19; HI vs. hypoxia, 1,195,085 ± 436,609 vs. 1,289,195 ± 468,941, p = 0.35) and at P21 (HI vs. control 1,265,190 ± 48,089 vs. 1,195,632 ± 26,912, p = 0.19; HI vs. hypoxia, 1,265,190 ± 48,089 vs. 1,309,563 ± 41,669, p = 0.49).
There is significant biological variability inherent in both the subplate neuron cell number and the pattern and severity of cortical injury following HI at P2 in rats. Despite this variability, the subplate neuron cell number is lower following P2 HI in animals with mild or moderate cortical injury, whereas the middle-to-lower-layer cortical neuronal number is unchanged. In more severe cases, neurons are lost from the lower cortical layers, suggesting a relative vulnerability of subplate neurons.
新生儿缺氧缺血(HI)的细胞靶点包括少突胶质细胞和神经元谱系,根据损伤发生时的发育阶段不同,易损细胞的模式也有所差异。发育中的白质损伤是人类早产脑损伤的一个特征性表现。然而,关于发育中的大脑皮质神经元损伤的数据也在不断积累。在最常用的早产HI脑损伤啮齿动物模型中,关于板下神经元对早期新生儿HI的敏感性报道存在矛盾,一些报道称其具有选择性易损性,而另一些报道则发现与其他皮质层相比,板下神经元的损失并未增加。不同研究中用于识别板下神经元并量化其数量的方法各不相同。
使用最近开发的皮质层特异性标记物,并通过确定性立体学方法进行量化,以确定啮齿动物模型中新生儿HI后脑板下神经元细胞丢失的程度和特异性。
出生后第2天(P2)的大鼠接受右侧颈总动脉结扎,随后进行2 - 3小时的缺氧(5.6%氧气)。在P8和P21(仅P21使用Foxp1)对分类为中度损伤的大脑用板下和皮质层III - V标记物(分别为Complexin3和Foxp1)进行染色。使用光学分割器量化板下和皮质中/下层神经元的数量,并在各组(未处理对照、缺氧半球和HI半球)之间进行比较。
在P2对大鼠进行HI后,与未处理对照或仅缺氧组相比,HI半球中表达Complexin3的板下神经元总数显著减少(HI组与对照组:26,747 ± 7,952 vs. 35,468 ± 8,029,p = 0.04;HI组与缺氧组:26,747 ± 7,952 vs. 40,439 ± 7,363,p = 0.003)。相比之下,在P8时,表达Foxp1的III - V层细胞总数在三种情况下无差异(HI组与对照组:1,195,085 ± 436,609 vs. 1,234,640 ± 178,540,p = 0.19;HI组与缺氧组:1,195,085 ± 436,609 vs. 1,289,195 ± 468,941,p = 0.35),在P21时也无差异(HI组与对照组:1,265,190 ± 48,089 vs. 1,195,632 ± 26,912,p = 0.19;HI组与缺氧组:1,265,190 ± 48,089 vs. 1,309,563 ± 41,669,p = 0.49)。
大鼠在P2发生HI后,板下神经元细胞数量以及皮质损伤的模式和严重程度存在显著的生物学变异性。尽管存在这种变异性,但在轻度或中度皮质损伤的动物中,P2 HI后脑板下神经元细胞数量减少,而皮质中下层神经元数量未变。在更严重的情况下,皮质下层的神经元会丢失,这表明板下神经元相对易损。