Barrientos Pablo G, Rodríguez J Ángel, Ruiz-Herrera Alfonso
Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, Brazil.
Departamento de Matemáticas, Universidad de Oviedo, Oviedo, Spain.
J Math Biol. 2017 Dec;75(6-7):1655-1668. doi: 10.1007/s00285-017-1130-9. Epub 2017 Apr 22.
We prove analytically the existence of chaotic dynamics in the forced SIR model. Although numerical experiments have already suggested that this model can exhibit chaotic dynamics, a rigorous proof (without computer-aided) was not given before. Under seasonality in the transmission rate, the coexistence of low birth and mortality rates with high recovery and transmission rates produces infinitely many periodic and aperiodic patterns together with sensitive dependence on the initial conditions.
我们通过分析证明了强迫SIR模型中混沌动力学的存在。尽管数值实验已经表明该模型可以展现出混沌动力学,但此前并未给出严格的(无需计算机辅助的)证明。在传播率存在季节性的情况下,低出生率和死亡率与高恢复率和传播率共存会产生无穷多个周期性和非周期性模式,同时对初始条件具有敏感依赖性。