Institute for Theoretical Physics, Eötvös University, Pázmány P. s. 1A, H-1117 Budapest, Hungary.
J R Soc Interface. 2020 Dec;17(173):20200648. doi: 10.1098/rsif.2020.0648. Epub 2020 Dec 9.
Standard epidemic models based on compartmental differential equations are investigated under continuous parameter change as external forcing. We show that seasonal modulation of the contact parameter superimposed upon a monotonic decay needs a different description from that of the standard chaotic dynamics. The concept of snapshot attractors and their natural distribution has been adopted from the field of the latest climate change research. This shows the importance of the finite-time chaotic effect and ensemble interpretation while investigating the spread of a disease. By defining statistical measures over the ensemble, we can interpret the internal variability of the epidemic as the onset of complex dynamics-even for those values of contact parameters where originally regular behaviour is expected. We argue that anomalous outbreaks of the infectious class cannot die out until transient chaos is presented in the system. Nevertheless, this fact becomes apparent by using an ensemble approach rather than a single trajectory representation. These findings are applicable generally in explicitly time-dependent epidemic systems regardless of parameter values and time scales.
我们研究了基于房室微分方程的标准传染病模型,这些模型受到连续参数变化的外部强迫。我们表明,接触参数的季节性调制叠加在单调衰减上,需要与标准混沌动力学的描述不同。快照吸引子及其自然分布的概念来自最新气候变化研究领域。这表明,在研究疾病传播时,有限时间混沌效应和整体解释的重要性。通过在整体上定义统计量,我们可以将传染病的内部可变性解释为复杂动力学的开始,即使对于原本预期的规则行为的接触参数值也是如此。我们认为,传染性疾病的异常爆发不会消失,除非系统中出现瞬态混沌。然而,通过使用整体方法而不是单个轨迹表示,这一事实变得明显。这些发现适用于明确的时变传染病系统,无论参数值和时间尺度如何。