O'Regan Suzanne M, Kelly Thomas C, Korobeinikov Andrei, O'Callaghan Michael J A, Pokrovskii Alexei V, Rachinskii Dmitrii
Department of Applied Mathematics, Western Gateway Building, University College Cork, Western Road, Cork, Ireland.
J Math Biol. 2013 Aug;67(2):293-327. doi: 10.1007/s00285-012-0550-9. Epub 2012 May 31.
Seasonality is a complex force in nature that affects multiple processes in wild animal populations. In particular, seasonal variations in demographic processes may considerably affect the persistence of a pathogen in these populations. Furthermore, it has been long observed in computer simulations that under seasonal perturbations, a host-pathogen system can exhibit complex dynamics, including the transition to chaos, as the magnitude of the seasonal perturbation increases. In this paper, we develop a seasonally perturbed Susceptible-Infected-Recovered model of avian influenza in a seabird colony. Numerical simulations of the model give rise to chaotic recurrent epidemics for parameters that reflect the ecology of avian influenza in a seabird population, thereby providing a case study for chaos in a host- pathogen system. We give a computer-assisted exposition of the existence of chaos in the model using methods that are based on the concept of topological hyperbolicity. Our approach elucidates the geometry of the chaos in the phase space of the model, thereby offering a mechanism for the persistence of the infection. Finally, the methods described in this paper may be immediately extended to other infections and hosts, including humans.
季节性是自然界中一种复杂的力量,它影响着野生动物种群中的多个过程。特别是,种群统计学过程中的季节性变化可能会极大地影响病原体在这些种群中的持续存在。此外,长期以来在计算机模拟中观察到,在季节性扰动下,随着季节性扰动幅度的增加,宿主-病原体系统会表现出复杂的动态,包括向混沌的转变。在本文中,我们构建了一个在海鸟群落中受季节性扰动的易感-感染-康复禽流感模型。该模型的数值模拟针对反映海鸟种群中禽流感生态学的参数产生了混沌反复流行,从而为宿主-病原体系统中的混沌提供了一个案例研究。我们使用基于拓扑双曲性概念的方法,对模型中混沌的存在进行了计算机辅助阐述。我们的方法阐明了模型相空间中混沌的几何结构,从而为感染的持续存在提供了一种机制。最后,本文所述方法可立即扩展到包括人类在内的其他感染和宿主。