Suppr超能文献

弥漫性脑桥内在型胶质瘤中的转录依赖性

Transcriptional Dependencies in Diffuse Intrinsic Pontine Glioma.

作者信息

Nagaraja Surya, Vitanza Nicholas A, Woo Pamelyn J, Taylor Kathryn R, Liu Fang, Zhang Lei, Li Meng, Meng Wei, Ponnuswami Anitha, Sun Wenchao, Ma Jie, Hulleman Esther, Swigut Tomek, Wysocka Joanna, Tang Yujie, Monje Michelle

机构信息

Department of Neurology, Stanford University, Palo Alto, CA 94305, USA.

Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, P.R. China.

出版信息

Cancer Cell. 2017 May 8;31(5):635-652.e6. doi: 10.1016/j.ccell.2017.03.011. Epub 2017 Apr 20.

Abstract

Diffuse intrinsic pontine glioma (DIPG) is a fatal pediatric cancer with limited therapeutic options. The majority of cases of DIPG exhibit a mutation in histone-3 (H3K27M) that results in oncogenic transcriptional aberrancies. We show here that DIPG is vulnerable to transcriptional disruption using bromodomain inhibition or CDK7 blockade. Targeting oncogenic transcription through either of these methods synergizes with HDAC inhibition, and DIPG cells resistant to HDAC inhibitor therapy retain sensitivity to CDK7 blockade. Identification of super-enhancers in DIPG provides insights toward the cell of origin, highlighting oligodendroglial lineage genes, and reveals unexpected mechanisms mediating tumor viability and invasion, including potassium channel function and EPH receptor signaling. The findings presented demonstrate transcriptional vulnerabilities and elucidate previously unknown mechanisms of DIPG pathobiology.

摘要

弥漫性脑桥内在型胶质瘤(DIPG)是一种致命的儿科癌症,治疗选择有限。大多数DIPG病例表现出组蛋白-3(H3K27M)突变,导致致癌性转录异常。我们在此表明,使用溴结构域抑制或CDK7阻断,DIPG易受转录破坏影响。通过这两种方法中的任何一种靶向致癌转录与HDAC抑制协同作用,并且对HDAC抑制剂疗法耐药的DIPG细胞对CDK7阻断保持敏感性。DIPG中超增强子的鉴定为起源细胞提供了见解,突出了少突胶质细胞谱系基因,并揭示了介导肿瘤生存能力和侵袭的意外机制,包括钾通道功能和EPH受体信号传导。所呈现的研究结果证明了转录易感性,并阐明了DIPG病理生物学以前未知的机制。

相似文献

1
Transcriptional Dependencies in Diffuse Intrinsic Pontine Glioma.
Cancer Cell. 2017 May 8;31(5):635-652.e6. doi: 10.1016/j.ccell.2017.03.011. Epub 2017 Apr 20.
4
Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas.
Nat Med. 2017 Apr;23(4):493-500. doi: 10.1038/nm.4296. Epub 2017 Feb 27.
6
Re-programing Chromatin with a Bifunctional LSD1/HDAC Inhibitor Induces Therapeutic Differentiation in DIPG.
Cancer Cell. 2019 Nov 11;36(5):528-544.e10. doi: 10.1016/j.ccell.2019.09.005. Epub 2019 Oct 17.
7
Pre-Clinical Study of Panobinostat in Xenograft and Genetically Engineered Murine Diffuse Intrinsic Pontine Glioma Models.
PLoS One. 2017 Jan 4;12(1):e0169485. doi: 10.1371/journal.pone.0169485. eCollection 2017.
8
Functionally defined therapeutic targets in diffuse intrinsic pontine glioma.
Nat Med. 2015 Jun;21(6):555-9. doi: 10.1038/nm.3855. Epub 2015 May 4.
9
Combined Therapy of AXL and HDAC Inhibition Reverses Mesenchymal Transition in Diffuse Intrinsic Pontine Glioma.
Clin Cancer Res. 2020 Jul 1;26(13):3319-3332. doi: 10.1158/1078-0432.CCR-19-3538. Epub 2020 Mar 12.

引用本文的文献

3
Epigenetic modifications and their roles in pediatric brain tumor formation: emerging insights from chromatin dysregulation.
Front Oncol. 2025 Jun 17;15:1569548. doi: 10.3389/fonc.2025.1569548. eCollection 2025.
4
Aberrant histone modifications in pediatric brain tumors.
Front Oncol. 2025 Jun 10;15:1587157. doi: 10.3389/fonc.2025.1587157. eCollection 2025.
6
Mechanotransduction as a therapeutic target for brain tumours.
EBioMedicine. 2025 Jun 16;117:105808. doi: 10.1016/j.ebiom.2025.105808.
7
Evolving CAR T-Cell Therapy to Overcome the Barriers in Treating Pediatric Central Nervous System Tumors.
Cancer Discov. 2025 May 2;15(5):890-902. doi: 10.1158/2159-8290.CD-24-1465.
10
Effective targeting of PDGFRA-altered high-grade glioma with avapritinib.
Cancer Cell. 2025 Apr 14;43(4):740-756.e8. doi: 10.1016/j.ccell.2025.02.018. Epub 2025 Mar 13.

本文引用的文献

1
Pre-Clinical Study of Panobinostat in Xenograft and Genetically Engineered Murine Diffuse Intrinsic Pontine Glioma Models.
PLoS One. 2017 Jan 4;12(1):e0169485. doi: 10.1371/journal.pone.0169485. eCollection 2017.
2
Molecular neurobiology of mTOR.
Neuroscience. 2017 Jan 26;341:112-153. doi: 10.1016/j.neuroscience.2016.11.017. Epub 2016 Nov 23.
3
mTORC1 and mTORC2 in cancer and the tumor microenvironment.
Oncogene. 2017 Apr 20;36(16):2191-2201. doi: 10.1038/onc.2016.363. Epub 2016 Oct 17.
4
Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity-Diverse effects on cell growth, metabolism and cancer.
Biochim Biophys Acta. 2016 Dec;1863(12):2942-2976. doi: 10.1016/j.bbamcr.2016.09.004. Epub 2016 Sep 6.
5
Targeting super-enhancer-associated oncogenes in oesophageal squamous cell carcinoma.
Gut. 2017 Aug;66(8):1358-1368. doi: 10.1136/gutjnl-2016-311818. Epub 2016 May 10.
6
Is the Canonical RAF/MEK/ERK Signaling Pathway a Therapeutic Target in SCLC?
J Thorac Oncol. 2016 Aug;11(8):1233-1241. doi: 10.1016/j.jtho.2016.04.018. Epub 2016 Apr 29.
7
Eph-ephrin signaling in nervous system development.
F1000Res. 2016 Mar 30;5. doi: 10.12688/f1000research.7417.1. eCollection 2016.
8
Strategically targeting MYC in cancer.
F1000Res. 2016 Mar 29;5. doi: 10.12688/f1000research.7879.1. eCollection 2016.
9
The Bromodomain BET Inhibitor JQ1 Suppresses Tumor Angiogenesis in Models of Childhood Sarcoma.
Mol Cancer Ther. 2016 May;15(5):1018-28. doi: 10.1158/1535-7163.MCT-15-0567. Epub 2016 Feb 23.
10
BET Bromodomain Inhibition as a Therapeutic Strategy in Ovarian Cancer by Downregulating FoxM1.
Theranostics. 2016 Jan 1;6(2):219-30. doi: 10.7150/thno.13178. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验