Assaad Aziz, Pontvianne Steve, Pons Marie-Noëlle
Laboratoire Réactions et Génie des Procédés, UMR CNRS 7274, Université de Lorraine, 1 rue Grandville, BP 20451, 54001, Nancy Cedex, France.
LTER, Zone Atelier du Bassin de la Moselle, Laboratoire Réactions et Génie des Procédés, CNRS-Université de Lorraine, 1, rue Grandville, BP 20451, 54001, Nancy Cedex, France.
Environ Monit Assess. 2017 May;189(5):229. doi: 10.1007/s10661-017-5933-3. Epub 2017 Apr 24.
To rapidly monitor the surface water quality in terms of organic pollution of an industrial river undergoing restoration, optical methods (UV-visible spectrometry and fluorescence) were applied in parallel to classical physical-chemical analyses. UV-visible spectra were analyzed using the maximum of the second derivative at 225 nm (related to nitrates), specific absorbance at 254 nm (SUVA), and the spectral slope between 275 and 295 nm (S ) (related to the aromaticity and molecular weight of dissolved organic carbon). The synchronous fluorescence spectra (wavelength difference = 50 nm) exhibited a high variability in the composition of dissolved organic material between the upstream and downstream sections and also versus time. The principal components analysis of the entire set of synchronous fluorescence spectra helped to define three river sections with different pollution characteristics. Spectral decomposition was applied to the two most upstream sections: five fluorophores, classical in rivers impacted by domestic sewage and related to protein-like (λ = 280 nm) and humic-like fluorescence (M-type with λ ≈ 305-310 nm and C-type with λ ≥ 335 nm), were identified. The irregular shape of the synchronous fluorescence spectra in the most downstream section is likely due to organic pollutants of industrial origin; however, their variability and the complexity of the spectra did not allow the further elucidation of their nature.
为了快速监测一条正在进行修复的工业河流中有机污染方面的地表水水质,将光学方法(紫外可见光谱法和荧光法)与传统的物理化学分析方法并行应用。利用225nm处二阶导数的最大值(与硝酸盐有关)、254nm处的比吸光度(SUVA)以及275至295nm之间的光谱斜率(S)(与溶解有机碳的芳香性和分子量有关)对紫外可见光谱进行分析。同步荧光光谱(波长差 = 50nm)显示,上下游区域之间以及随时间变化,溶解有机物质的组成具有很大的变异性。对整个同步荧光光谱集进行主成分分析,有助于确定具有不同污染特征的三个河段。对最上游的两个河段进行了光谱分解:识别出了五种荧光团,这些荧光团在受生活污水影响的河流中很常见,与类蛋白质荧光(λ = 280nm)和类腐殖质荧光(M型,λ ≈ 305 - 310nm;C型,λ ≥ 335nm)有关。最下游河段同步荧光光谱的不规则形状可能是由于工业来源的有机污染物造成的;然而,它们的变异性和光谱的复杂性使得无法进一步阐明其性质。