Suppr超能文献

基于二部网络和资源转移的方法推断 lncRNA-环境因素关联。

A Bipartite Network and Resource Transfer-Based Approach to Infer lncRNA-Environmental Factor Associations.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2018 May-Jun;15(3):753-759. doi: 10.1109/TCBB.2017.2695187. Epub 2017 Apr 18.

Abstract

Phenotypes and diseases are often determined by the complex interactions between genetic factors and environmental factors (EFs). However, compared with protein-coding genes and microRNAs, there is a paucity of computational methods for understanding the associations between long non-coding RNAs (lncRNAs) and EFs. In this study, we focused on the associations between lncRNA and EFs. By using the common miRNA partners of any pair of lncRNA and EF, based on the competing endogenous RNA (ceRNA) hypothesis and the technique of resources transfer within the experimentally-supported lncRNA-miRNA and miRNA-EF association bipartite networks, we propose an algorithm for predicting new lncRNA-EF associations. Results show that, compared with another recently-proposed method, our approach is capable of predicting more credible lncRNA-EF associations. These results support the validity of our approach to predict biologically significant associations, which could lead to a better understanding of the molecular processes.

摘要

表型和疾病通常是由遗传因素和环境因素(EFs)之间的复杂相互作用决定的。然而,与蛋白质编码基因和 microRNA 相比,用于理解长非编码 RNA(lncRNA)与 EFs 之间关联的计算方法却很少。在这项研究中,我们专注于 lncRNA 与 EFs 之间的关联。通过使用任何一对 lncRNA 和 EF 的常见 miRNA 伙伴,基于竞争内源性 RNA(ceRNA)假说和实验支持的 lncRNA-miRNA 和 miRNA-EF 关联二分网络中的资源转移技术,我们提出了一种预测新的 lncRNA-EF 关联的算法。结果表明,与另一种最近提出的方法相比,我们的方法能够预测更可信的 lncRNA-EF 关联。这些结果支持了我们预测具有生物学意义关联的方法的有效性,这可能有助于更好地理解分子过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验