Suppr超能文献

GoDec+:基于最大相关熵的快速稳健低秩矩阵分解。

GoDec+: Fast and Robust Low-Rank Matrix Decomposition Based on Maximum Correntropy.

出版信息

IEEE Trans Neural Netw Learn Syst. 2018 Jun;29(6):2323-2336. doi: 10.1109/TNNLS.2016.2643286. Epub 2017 Apr 20.

Abstract

GoDec is an efficient low-rank matrix decomposition algorithm. However, optimal performance depends on sparse errors and Gaussian noise. This paper aims to address the problem that a matrix is composed of a low-rank component and unknown corruptions. We introduce a robust local similarity measure called correntropy to describe the corruptions and, in doing so, obtain a more robust and faster low-rank decomposition algorithm: GoDec+. Based on half-quadratic optimization and greedy bilateral paradigm, we deliver a solution to the maximum correntropy criterion (MCC)-based low-rank decomposition problem. Experimental results show that GoDec+ is efficient and robust to different corruptions including Gaussian noise, Laplacian noise, salt & pepper noise, and occlusion on both synthetic and real vision data. We further apply GoDec+ to more general applications including classification and subspace clustering. For classification, we construct an ensemble subspace from the low-rank GoDec+ matrix and introduce an MCC-based classifier. For subspace clustering, we utilize GoDec+ values low-rank matrix for MCC-based self-expression and combine it with spectral clustering. Face recognition, motion segmentation, and face clustering experiments show that the proposed methods are effective and robust. In particular, we achieve the state-of-the-art performance on the Hopkins 155 data set and the first 10 subjects of extended Yale B for subspace clustering.

摘要

GoDec 是一种高效的低秩矩阵分解算法。然而,其最优性能取决于稀疏错误和高斯噪声。本文旨在解决矩阵由低秩分量和未知错误组成的问题。我们引入了一种称为 correntropy 的鲁棒局部相似性度量来描述错误,并由此得到一种更稳健、更快的低秩分解算法:GoDec+。基于半二次优化和贪婪双边范式,我们提出了一种基于最大 correntropy 准则 (MCC) 的低秩分解问题的解决方案。实验结果表明,GoDec+ 对包括高斯噪声、拉普拉斯噪声、椒盐噪声和遮挡在内的不同错误具有高效和鲁棒性,适用于合成和真实视觉数据。我们进一步将 GoDec+ 应用于更一般的应用,包括分类和子空间聚类。对于分类,我们从低秩 GoDec+矩阵构建集成子空间,并引入基于 MCC 的分类器。对于子空间聚类,我们利用基于 MCC 的 GoDec+ 值进行自表达,并将其与谱聚类相结合。人脸识别、运动分割和人脸聚类实验表明,所提出的方法是有效和鲁棒的。特别是,我们在 Hopkins 155 数据集和扩展 Yale B 的前 10 个主题上的子空间聚类中实现了最先进的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验