Suppr超能文献

通过X射线冠状动脉造影背景层的张量补全实现精确血管提取。

Accurate vessel extraction via tensor completion of background layer in X-ray coronary angiograms.

作者信息

Qin Binjie, Jin Mingxin, Hao Dongdong, Lv Yisong, Liu Qiegen, Zhu Yueqi, Ding Song, Zhao Jun, Fei Baowei

机构信息

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

Pattern Recognit. 2019 Mar;87:38-54. doi: 10.1016/j.patcog.2018.09.015. Epub 2018 Oct 9.

Abstract

This paper proposes an effective method for accurately recovering vessel structures and intensity information from the X-ray coronary angiography (XCA) images of moving organs or tissues. Specifically, a global logarithm transformation of XCA images is implemented to fit the X-ray attenuation sum model of vessel/background layers into a low-rank, sparse decomposition model for vessel/background separation. The contrast-filled vessel structures are extracted by distinguishing the vessels from the low-rank backgrounds by using a robust principal component analysis and by constructing a vessel mask via Radon-like feature filtering plus spatially adaptive thresholding. Subsequently, the low-rankness and inter-frame spatio-temporal connectivity in the complex and noisy backgrounds are used to recover the vessel-masked background regions using tensor completion of all other background regions, while the twist tensor nuclear norm is minimized to complete the background layers. Finally, the method is able to accurately extract vessels' intensities from the noisy XCA data by subtracting the completed background layers from the overall XCA images. We evaluated the vessel visibility of resulting images on real X-ray angiography data and evaluated the accuracy of vessel intensity recovery on synthetic data. Experiment results show the superiority of the proposed method over the state-of-the-art methods.

摘要

本文提出了一种有效的方法,用于从移动器官或组织的X射线冠状动脉造影(XCA)图像中准确恢复血管结构和强度信息。具体而言,对XCA图像进行全局对数变换,将血管/背景层的X射线衰减总和模型拟合为用于血管/背景分离的低秩、稀疏分解模型。通过使用稳健主成分分析将血管与低秩背景区分开来,并通过类似拉东特征滤波加空间自适应阈值处理构建血管掩码,从而提取充满造影剂的血管结构。随后,利用复杂噪声背景中的低秩性和帧间时空连通性,通过对所有其他背景区域进行张量补全来恢复血管掩码背景区域,同时最小化扭曲张量核范数以完成背景层。最后,该方法通过从整体XCA图像中减去补全后的背景层,能够从有噪声的XCA数据中准确提取血管强度。我们在真实的X射线血管造影数据上评估了所得图像的血管可见性,并在合成数据上评估了血管强度恢复的准确性。实验结果表明,所提方法优于现有方法。

相似文献

5
Sequential vessel segmentation via deep channel attention network.基于深度通道注意力网络的血管序列分割。
Neural Netw. 2020 Aug;128:172-187. doi: 10.1016/j.neunet.2020.05.005. Epub 2020 May 13.

本文引用的文献

1
Tensor Robust Principal Component Analysis with a New Tensor Nuclear Norm.具有新型张量核范数的张量鲁棒主成分分析
IEEE Trans Pattern Anal Mach Intell. 2020 Apr;42(4):925-938. doi: 10.1109/TPAMI.2019.2891760. Epub 2019 Jan 9.
2
Online Robust Low-Rank Tensor Modeling for Streaming Data Analysis.用于流数据分析的在线鲁棒低秩张量建模
IEEE Trans Neural Netw Learn Syst. 2019 Apr;30(4):1061-1075. doi: 10.1109/TNNLS.2018.2860964. Epub 2018 Aug 20.
4
Background-Foreground Modeling Based on Spatiotemporal Sparse Subspace Clustering.基于时空稀疏子空间聚类的背景-前景建模。
IEEE Trans Image Process. 2017 Dec;26(12):5840-5854. doi: 10.1109/TIP.2017.2746268. Epub 2017 Aug 29.
6
Feature Interaction Augmented Sparse Learning for Fast Kinect Motion Detection.基于特征交互增强稀疏学习的快速 Kinect 运动检测。
IEEE Trans Image Process. 2017 Aug;26(8):3911-3920. doi: 10.1109/TIP.2017.2708506. Epub 2017 May 26.
9
GoDec+: Fast and Robust Low-Rank Matrix Decomposition Based on Maximum Correntropy.GoDec+:基于最大相关熵的快速稳健低秩矩阵分解。
IEEE Trans Neural Netw Learn Syst. 2018 Jun;29(6):2323-2336. doi: 10.1109/TNNLS.2016.2643286. Epub 2017 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验