Suppr超能文献

营养缺乏条件下拟南芥的自动化高通量根系表型分析

Automated High-Throughput Root Phenotyping of Arabidopsis thaliana Under Nutrient Deficiency Conditions.

作者信息

Satbhai Santosh B, Göschl Christian, Busch Wolfgang

机构信息

Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria.

出版信息

Methods Mol Biol. 2017;1610:135-153. doi: 10.1007/978-1-4939-7003-2_10.

Abstract

The central question of genetics is how a genotype determines the phenotype of an organism. Genetic mapping approaches are a key for finding answers to this question. In particular, genome-wide association (GWA) studies have been rapidly adopted to study the architecture of complex quantitative traits. This was only possible due to the improvement of high-throughput and low-cost phenotyping methodologies. In this chapter we provide a detailed protocol for obtaining root trait data from the model species Arabidopsis thaliana using the semiautomated, high-throughput phenotyping pipeline BRAT (Busch-lab Root Analysis Toolchain) for early root growth under the stress condition of iron deficiency. Extracted root trait data can be directly used to perform GWA mapping using the freely accessible web application GWAPP to identify marker polymorphisms associated with the phenotype of interest.

摘要

遗传学的核心问题是基因型如何决定生物体的表型。遗传图谱方法是找到这个问题答案的关键。特别是,全基因组关联(GWA)研究已被迅速采用来研究复杂数量性状的结构。这只有通过高通量和低成本表型分析方法的改进才得以实现。在本章中,我们提供了一个详细的方案,用于使用半自动化、高通量表型分析流程BRAT(布施实验室根系分析工具链)从模式植物拟南芥中获取根系性状数据,以研究缺铁胁迫条件下的早期根系生长。提取的根系性状数据可直接用于使用免费的网络应用程序GWAPP进行全基因组关联图谱分析,以识别与感兴趣的表型相关的标记多态性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验