Suppr超能文献

用于预测代谢综合征的系统代谢组学

Systems Metabolomics for Prediction of Metabolic Syndrome.

作者信息

Pujos-Guillot Estelle, Brandolini Marion, Pétéra Mélanie, Grissa Dhouha, Joly Charlotte, Lyan Bernard, Herquelot Éléonore, Czernichow Sébastien, Zins Marie, Goldberg Marcel, Comte Blandine

机构信息

Université Clermont Auvergne, INRA, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, France.

Université Clermont Auvergne, INRA, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, CRNH Auvergne, F-63000 Clermont-Ferrand, France.

出版信息

J Proteome Res. 2017 Jun 2;16(6):2262-2272. doi: 10.1021/acs.jproteome.7b00116. Epub 2017 May 4.

Abstract

The evolution of human health is a continuum of transitions, involving multifaceted processes at multiple levels, and there is an urgent need for integrative biomarkers that can characterize and predict progression toward disease development. The objective of this work was to perform a systems metabolomics approach to predict metabolic syndrome (MetS) development. A case-control design was used within the French occupational GAZEL cohort (n = 112 males: discovery study; n = 94: replication/validation study). Our integrative strategy was to combine untargeted metabolomics with clinical, sociodemographic, and food habit parameters to describe early phenotypes and build multidimensional predictive models. Different models were built from the discriminant variables, and prediction performances were optimized either when reducing the number of metabolites used or when keeping the associated signature. We illustrated that a selected reduced metabolic profile was able to reveal subtle phenotypic differences 5 years before MetS occurrence. Moreover, resulting metabolomic markers, when combined with clinical characteristics, allowed improving the disease development prediction. The validation study showed that this predictive performance was specific to the MetS component. This work also demonstrates the interest of such an approach to discover subphenotypes that will need further characterization to be able to shift to molecular reclassification and targeting of MetS.

摘要

人类健康的演变是一个连续的转变过程,涉及多个层面的多方面进程,因此迫切需要能够表征和预测疾病发展进程的综合生物标志物。这项工作的目的是采用系统代谢组学方法来预测代谢综合征(MetS)的发展。在法国GAZEL职业队列中采用了病例对照设计(发现研究中n = 112名男性;复制/验证研究中n = 94)。我们的综合策略是将非靶向代谢组学与临床、社会人口统计学和饮食习惯参数相结合,以描述早期表型并建立多维预测模型。根据判别变量构建了不同的模型,在减少所用代谢物数量或保留相关特征时优化了预测性能。我们证明,选定的简化代谢谱能够在MetS发生前5年揭示细微的表型差异。此外,所得的代谢组学标志物与临床特征相结合后,能够改善对疾病发展的预测。验证研究表明,这种预测性能特定于MetS组分。这项工作还证明了这种方法对于发现亚表型的意义,这些亚表型需要进一步表征,以便能够转向MetS的分子重新分类和靶向治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验