Suppr超能文献

采用非靶向和靶向 LC-MS 脂质组学方法发现代谢综合征的代谢物特征。

Discovery of metabolite profiles of metabolic syndrome using untargeted and targeted LC-MS based lipidomics approach.

机构信息

Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.

Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.

出版信息

J Pharm Biomed Anal. 2020 Jan 5;177:112848. doi: 10.1016/j.jpba.2019.112848. Epub 2019 Aug 29.

Abstract

Metabolic syndrome (MetS) is an important risk factor for type 2 diabetes, cardiovascular diseases and all-cause morbidity and mortality. Biomarkers can provide insight into the mechanism, facilitate early detection, and monitor progression of MetS and its response to therapeutic interventions. To identify potential biomarkers, we applied a non-targeted and targeted lipidomics method to characterize plasma metabolic profile in MetS patients. Metabolic profiling was performed on a non-target set (40 cases and 40 controls) on UHPLC-Q-TOF/MS and target set (80 MetS patients and 80 healthy controls) on UHPLC-Q-orbitrap MS. Using comprehensive screening and validation workflow, we identified a panel of three metabolites including PC(18:1/P-16:0), PC(o-22:3/22:3), PC(P-18:1/16:1). Our results indicated that the identified biomarkers may improve the risk prediction and provide a novel tool for monitoring of the progression of disease and response to treatment in MetS patients.

摘要

代谢综合征(MetS)是 2 型糖尿病、心血管疾病和全因发病率及死亡率的重要危险因素。生物标志物可以深入了解其发病机制,有助于早期发现,并监测 MetS 及其对治疗干预的反应进展。为了鉴定潜在的生物标志物,我们应用非靶向和靶向脂质组学方法来描述 MetS 患者的血浆代谢图谱。代谢图谱分析在非靶向组(40 例病例和 40 例对照)上采用 UHPLC-Q-TOF/MS 进行,在靶向组(80 例 MetS 患者和 80 例健康对照)上采用 UHPLC-Q- Orbitrap MS 进行。采用全面的筛选和验证工作流程,我们鉴定了一组包括 PC(18:1/P-16:0)、PC(o-22:3/22:3)、PC(P-18:1/16:1)的三种代谢物标志物。我们的结果表明,所鉴定的生物标志物可能改善风险预测,并为监测 MetS 患者疾病进展和治疗反应提供新的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验