人群血清蛋白质组学揭示代谢综合征的预后蛋白分类器。
Population serum proteomics uncovers a prognostic protein classifier for metabolic syndrome.
机构信息
Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China.
Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510080, China.
出版信息
Cell Rep Med. 2023 Sep 19;4(9):101172. doi: 10.1016/j.xcrm.2023.101172. Epub 2023 Aug 30.
Metabolic syndrome (MetS) is a complex metabolic disorder with a global prevalence of 20%-25%. Early identification and intervention would help minimize the global burden on healthcare systems. Here, we measured over 400 proteins from ∼20,000 proteomes using data-independent acquisition mass spectrometry for 7,890 serum samples from a longitudinal cohort of 3,840 participants with two follow-up time points over 10 years. We then built a machine-learning model for predicting the risk of developing MetS within 10 years. Our model, composed of 11 proteins and the age of the individuals, achieved an area under the curve of 0.774 in the validation cohort (n = 242). Using linear mixed models, we found that apolipoproteins, immune-related proteins, and coagulation-related proteins best correlated with MetS development. This population-scale proteomics study broadens our understanding of MetS and may guide the development of prevention and targeted therapies for MetS.
代谢综合征(MetS)是一种复杂的代谢紊乱,全球患病率为 20%-25%。早期识别和干预有助于最大限度地减少医疗保健系统的全球负担。在这里,我们使用非依赖性数据获取质谱法,对来自 3840 名参与者的纵向队列的 7890 个血清样本进行了超过 400 种蛋白质的测量,这些参与者有两个随访时间点,时间跨度为 10 年。然后,我们为预测在 10 年内发生代谢综合征的风险建立了一个机器学习模型。我们的模型由 11 种蛋白质和个体年龄组成,在验证队列(n=242)中取得了 0.774 的曲线下面积。使用线性混合模型,我们发现载脂蛋白、免疫相关蛋白和凝血相关蛋白与代谢综合征的发展相关性最好。这项基于人群的蛋白质组学研究拓宽了我们对代谢综合征的认识,并可能为代谢综合征的预防和靶向治疗提供指导。
相似文献
Cell Rep Med. 2023-9-19
Cardiovasc Diabetol. 2021-5-20
Metab Syndr Relat Disord. 2019-3-18
Metab Syndr Relat Disord. 2020-6
引用本文的文献
Front Med (Lausanne). 2025-8-15
J Am Soc Mass Spectrom. 2024-11-6
本文引用的文献
Nucleic Acids Res. 2022-1-7
Cell. 2021-9-2
Nutrients. 2021-7-16
Lipids Health Dis. 2021-7-18
J Genet Genomics. 2021-9-20