Suppr超能文献

RNA-蛋白质相互作用的全球视角揭示了根毛细胞命运的转录后调控因子。

A Global View of RNA-Protein Interactions Identifies Post-transcriptional Regulators of Root Hair Cell Fate.

作者信息

Foley Shawn W, Gosai Sager J, Wang Dongxue, Selamoglu Nur, Sollitti Amelia C, Köster Tino, Steffen Alexander, Lyons Eric, Daldal Fevzi, Garcia Benjamin A, Staiger Dorothee, Deal Roger B, Gregory Brian D

机构信息

Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA.

Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA.

出版信息

Dev Cell. 2017 Apr 24;41(2):204-220.e5. doi: 10.1016/j.devcel.2017.03.018.

Abstract

The Arabidopsis thaliana root epidermis is comprised of two cell types, hair and nonhair cells, which differentiate from the same precursor. Although the transcriptional programs regulating these events are well studied, post-transcriptional factors functioning in this cell fate decision are mostly unknown. Here, we globally identify RNA-protein interactions and RNA secondary structure in hair and nonhair cell nuclei. This analysis reveals distinct structural and protein binding patterns across both transcriptomes, allowing identification of differential RNA binding protein (RBP) recognition sites. Using these sequences, we identify two RBPs that regulate hair cell development. Specifically, we find that SERRATE functions in a microRNA-dependent manner to inhibit hair cell fate, while also terminating growth of root hairs mostly independent of microRNA biogenesis. In addition, we show that GLYCINE-RICH PROTEIN 8 promotes hair cell fate while alleviating phosphate starvation stress. In total, this global analysis reveals post-transcriptional regulators of plant root epidermal cell fate.

摘要

拟南芥根表皮由两种细胞类型组成,即毛细胞和非毛细胞,它们由相同的前体细胞分化而来。尽管调节这些事件的转录程序已得到充分研究,但在这种细胞命运决定中起作用的转录后因子大多未知。在这里,我们全面鉴定了毛细胞和非毛细胞核中的RNA-蛋白质相互作用以及RNA二级结构。该分析揭示了两个转录组中不同的结构和蛋白质结合模式,从而能够鉴定出差异RNA结合蛋白(RBP)识别位点。利用这些序列,我们鉴定出两个调节毛细胞发育的RBP。具体而言,我们发现锯齿状蛋白以一种依赖于微小RNA的方式发挥作用,抑制毛细胞命运,同时也在很大程度上独立于微小RNA生物合成来终止根毛的生长。此外,我们表明富含甘氨酸蛋白8促进毛细胞命运,同时缓解磷饥饿胁迫。总的来说,这种全面分析揭示了植物根表皮细胞命运的转录后调节因子。

相似文献

1
A Global View of RNA-Protein Interactions Identifies Post-transcriptional Regulators of Root Hair Cell Fate.
Dev Cell. 2017 Apr 24;41(2):204-220.e5. doi: 10.1016/j.devcel.2017.03.018.
2
Molecular Basis for a Cell Fate Switch in Response to Impaired Ribosome Biogenesis in the Arabidopsis Root Epidermis.
Plant Cell. 2020 Jul;32(7):2402-2423. doi: 10.1105/tpc.19.00773. Epub 2020 May 5.
3
Cell fate in the Arabidopsis root epidermis is determined by competition between WEREWOLF and CAPRICE.
Plant Physiol. 2011 Nov;157(3):1196-208. doi: 10.1104/pp.111.185785. Epub 2011 Sep 13.
4
Root Epidermal Cell Patterning Is Modulated by a Critical Residue in the WEREWOLF Transcription Factor.
Plant Physiol. 2019 Nov;181(3):1239-1256. doi: 10.1104/pp.19.00458. Epub 2019 Sep 6.
5
The ectopic localization of CAPRICE LIKE MYB3 protein in Arabidopsis root epidermis.
J Plant Physiol. 2016 Jul 20;199:111-115. doi: 10.1016/j.jplph.2016.05.014. Epub 2016 May 27.
7
An ancient transcriptional regulatory module for tip growth has been conserved throughout the vascular plant lineage.
Plant Signal Behav. 2017 Mar 4;12(3):e1294300. doi: 10.1080/15592324.2017.1294300.
8
The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root.
Development. 2003 Dec;130(26):6431-9. doi: 10.1242/dev.00880. Epub 2003 Nov 19.

引用本文的文献

1
Global analysis of excitotoxicity-induced alterations in RNA structure and RNA-protein binding in neurons.
iScience. 2025 May 6;28(6):112595. doi: 10.1016/j.isci.2025.112595. eCollection 2025 Jun 20.
3
Beyond transcription: compelling open questions in plant RNA biology.
Plant Cell. 2023 May 29;35(6):1626-1653. doi: 10.1093/plcell/koac346.
4
Toward a systems view on RNA-binding proteins and associated RNAs in plants: Guilt by association.
Plant Cell. 2023 May 29;35(6):1708-1726. doi: 10.1093/plcell/koac345.
5
Recent advances in RNA structurome.
Sci China Life Sci. 2022 Jul;65(7):1285-1324. doi: 10.1007/s11427-021-2116-2. Epub 2022 Jun 14.
7
Identification and functional annotation of long intergenic non-coding RNAs in Brassicaceae.
Plant Cell. 2022 Aug 25;34(9):3233-3260. doi: 10.1093/plcell/koac166.
8
Probing RNA Structure With Optimized DMS-MaPseq in Rice.
Front Plant Sci. 2022 Mar 31;13:869267. doi: 10.3389/fpls.2022.869267. eCollection 2022.
9
PlantGSAD: a comprehensive gene set annotation database for plant species.
Nucleic Acids Res. 2022 Jan 7;50(D1):D1456-D1467. doi: 10.1093/nar/gkab794.

本文引用的文献

2
The Conservation and Function of RNA Secondary Structure in Plants.
Annu Rev Plant Biol. 2016 Apr 29;67:463-88. doi: 10.1146/annurev-arplant-043015-111754. Epub 2016 Feb 8.
4
Epigenome profiling of specific plant cell types using a streamlined INTACT protocol and ChIP-seq.
Methods Mol Biol. 2015;1284:3-25. doi: 10.1007/978-1-4939-2444-8_1.
5
Global analysis of the RNA-protein interaction and RNA secondary structure landscapes of the Arabidopsis nucleus.
Mol Cell. 2015 Jan 22;57(2):376-88. doi: 10.1016/j.molcel.2014.12.004. Epub 2014 Dec 31.
6
Building robust transcriptomes with master splicing factors.
Cell. 2014 Oct 23;159(3):487-98. doi: 10.1016/j.cell.2014.09.054.
8
Root hairs.
Arabidopsis Book. 2014 Jun 25;12:e0172. doi: 10.1199/tab.0172. eCollection 2014.
9
Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1;1 expression in response to phosphate starvation.
Plant Physiol. 2014 Apr;164(4):2020-9. doi: 10.1104/pp.113.235077. Epub 2014 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验