Faculty of Kinesiology, University of New Brunswick, Fredericton, NB E3B5A3, Canada.
Institute of Biomedical Engineering, University of New Brunswick, Fredericton, NB E3B5A3, Canada.
Sensors (Basel). 2017 Apr 23;17(4):934. doi: 10.3390/s17040934.
The timed-up-and-go test (TUG) is one of the most commonly used tests of physical function in clinical practice and for research outcomes. Inertial sensors have been used to parse the TUG test into its composite phases (rising, walking, turning, etc.), but have not validated this approach against an optoelectronic gold-standard, and to our knowledge no studies have published the minimal detectable change of these measurements.
Eleven adults performed the TUG three times each under normal and slow walking conditions, and 3 m and 5 m walking distances, in a 12-camera motion analysis laboratory. An inertial measurement unit (IMU) with tri-axial accelerometers and gyroscopes was worn on the upper-torso. Motion analysis marker data and IMU signals were analyzed separately to identify the six main TUG phases: sit-to-stand, 1st walk, 1st turn, 2nd walk, 2nd turn, and stand-to-sit, and the absolute agreement between two systems analyzed using intra-class correlation (ICC, model 2) analysis. The minimal detectable change (MDC) within subjects was also calculated for each TUG phase.
The overall difference between TUG sub-tasks determined using 3D motion capture data and the IMU sensor data was <0.5 s. For all TUG distances and speeds, the absolute agreement was high for total TUG time and walk times (ICC > 0.90), but less for chair activity (ICC range 0.5-0.9) and typically poor for the turn time (ICC < 0.4). MDC values for total TUG time ranged between 2-4 s or 12-22% of the TUG time measurement. MDC of the sub-task times were higher proportionally, being 20-60% of the sub-task duration.
We conclude that a commercial IMU can be used for quantifying the TUG phases with accuracy sufficient for clinical applications; however, the MDC when using inertial sensors is not necessarily improved over less sophisticated measurement tools.
计时起立行走测试(TUG)是临床实践和研究结果中最常用的身体功能测试之一。惯性传感器已被用于将 TUG 测试分解为其复合阶段(起身、行走、转弯等),但尚未针对光电黄金标准验证这种方法,据我们所知,尚无研究公布这些测量的最小可检测变化。
11 名成年人在 12 个摄像机运动分析实验室中,分别在正常和慢速行走条件下、3 米和 5 米行走距离下,三次进行 TUG 测试。在上半身佩戴带有三轴加速度计和陀螺仪的惯性测量单元(IMU)。分别分析运动分析标记数据和 IMU 信号,以确定 TUG 的六个主要阶段:从坐到站起、第一次行走、第一次转弯、第二次行走、第二次转弯和从站到站起,并使用组内相关(ICC,模型 2)分析来分析两个系统之间的绝对一致性。还计算了每个 TUG 阶段的最小可检测变化(MDC)。
使用 3D 运动捕捉数据和 IMU 传感器数据确定的 TUG 子任务之间的总体差异<0.5s。对于所有 TUG 距离和速度,TUG 总时间和行走时间的绝对一致性均较高(ICC>0.90),但椅子活动的一致性较差(ICC 范围为 0.5-0.9),转弯时间的一致性通常较差(ICC<0.4)。TUG 总时间的 MDC 值在 2-4s 之间,或 TUG 时间测量值的 12-22%之间。子任务时间的 MDC 值成比例更高,占子任务持续时间的 20-60%。
我们得出的结论是,商用 IMU 可用于精确量化 TUG 阶段,足以满足临床应用的需要;但是,当使用惯性传感器时,MDC 不一定优于不太复杂的测量工具。