Suppr超能文献

复杂网络上反应扩散系统的模式不变性

Pattern invariance for reaction-diffusion systems on complex networks.

作者信息

Cencetti Giulia, Clusella Pau, Fanelli Duccio

机构信息

Università degli Studi di Firenze, Dipartimento di Ingegneria dell'Informazione, Florence, Italy.

Università degli Studi di Firenze, Dipartimento di Fisica e Astronomia and CSDC, Florence, Italy.

出版信息

Sci Rep. 2018 Nov 1;8(1):16226. doi: 10.1038/s41598-018-34372-0.

Abstract

Given a reaction-diffusion system interacting via a complex network, we propose two different techniques to modify the network topology while preserving its dynamical behaviour. In the region of parameters where the homogeneous solution gets spontaneously destabilized, perturbations grow along the unstable directions made available across the networks of connections, yielding irregular spatio-temporal patterns. We exploit the spectral properties of the Laplacian operator associated to the graph in order to modify its topology, while preserving the unstable manifold of the underlying equilibrium. The new network is isodynamic to the former, meaning that it reproduces the dynamical response (pattern) to a perturbation, as displayed by the original system. The first method acts directly on the eigenmodes, thus resulting in a general redistribution of link weights which, in some cases, can completely change the structure of the original network. The second method uses localization properties of the eigenvectors to identify and randomize a subnetwork that is mostly embedded only into the stable manifold. We test both techniques on different network topologies using the Ginzburg-Landau system as a reference model. Whereas the correlation between patterns on isodynamic networks generated via the first recipe is larger, the second method allows for a finer control at the level of single nodes. This work opens up a new perspective on the multiple possibilities for identifying the family of discrete supports that instigate equivalent dynamical responses on a multispecies reaction-diffusion system.

摘要

对于一个通过复杂网络相互作用的反应扩散系统,我们提出了两种不同的技术来修改网络拓扑结构,同时保持其动力学行为。在均匀解自发失稳的参数区域,扰动沿着连接网络中可用的不稳定方向增长,产生不规则的时空模式。我们利用与图相关联的拉普拉斯算子的谱性质来修改其拓扑结构,同时保留潜在平衡的不稳定流形。新网络与原网络是等动力学的,这意味着它能重现原系统对扰动的动力学响应(模式)。第一种方法直接作用于本征模,从而导致链路权重的一般重新分布,在某些情况下,这可能会完全改变原网络的结构。第二种方法利用本征向量的局部化性质来识别并随机化一个主要仅嵌入稳定流形的子网。我们使用金兹堡 - 朗道系统作为参考模型,在不同的网络拓扑结构上测试这两种技术。虽然通过第一种方法生成的等动力学网络上的模式之间的相关性更大,但第二种方法允许在单个节点层面进行更精细的控制。这项工作为识别在多物种反应扩散系统上引发等效动力学响应的离散支撑族的多种可能性开辟了新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/269f/6212431/ea786fe6b79d/41598_2018_34372_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验