Goetz Stefan M, Deng Zhi-De
a Department of Psychiatry & Behavioral Sciences, Division for Brain Stimulation & Neurophysiology , Duke University , Durham , NC , USA.
b Department of Electrical & Computer Engineering , Duke University , Durham , NC , USA.
Int Rev Psychiatry. 2017 Apr;29(2):115-145. doi: 10.1080/09540261.2017.1305949. Epub 2017 Apr 26.
Magnetic stimulation is a non-invasive neurostimulation technique that can evoke action potentials and modulate neural circuits through induced electric fields. Biophysical models of magnetic stimulation have become a major driver for technological developments and the understanding of the mechanisms of magnetic neurostimulation and neuromodulation. Major technological developments involve stimulation coils with different spatial characteristics and pulse sources to control the pulse waveform. While early technological developments were the result of manual design and invention processes, there is a trend in both stimulation coil and pulse source design to mathematically optimize parameters with the help of computational models. To date, macroscopically highly realistic spatial models of the brain, as well as peripheral targets, and user-friendly software packages enable researchers and practitioners to simulate the treatment-specific and induced electric field distribution in the brains of individual subjects and patients. Neuron models further introduce the microscopic level of neural activation to understand the influence of activation dynamics in response to different pulse shapes. A number of models that were designed for online calibration to extract otherwise covert information and biomarkers from the neural system recently form a third branch of modelling.
磁刺激是一种非侵入性神经刺激技术,它可以通过感应电场诱发动作电位并调节神经回路。磁刺激的生物物理模型已成为技术发展以及理解磁神经刺激和神经调节机制的主要驱动力。主要的技术发展包括具有不同空间特性的刺激线圈和用于控制脉冲波形的脉冲源。虽然早期的技术发展是手动设计和发明过程的结果,但在刺激线圈和脉冲源设计方面都有一个趋势,即借助计算模型对参数进行数学优化。迄今为止,宏观上高度逼真的大脑以及外周靶点的空间模型,以及用户友好的软件包,使研究人员和从业者能够模拟个体受试者和患者大脑中特定治疗和感应电场的分布。神经元模型进一步引入了神经激活的微观层面,以了解激活动力学对不同脉冲形状的响应影响。最近,一些为在线校准而设计的模型,用于从神经系统中提取其他隐蔽信息和生物标志物,形成了建模的第三个分支。