Suppr超能文献

用于经颅磁刺激的设备和范式的开发与建模。

The development and modelling of devices and paradigms for transcranial magnetic stimulation.

作者信息

Goetz Stefan M, Deng Zhi-De

机构信息

a Department of Psychiatry & Behavioral Sciences, Division for Brain Stimulation & Neurophysiology , Duke University , Durham , NC , USA.

b Department of Electrical & Computer Engineering , Duke University , Durham , NC , USA.

出版信息

Int Rev Psychiatry. 2017 Apr;29(2):115-145. doi: 10.1080/09540261.2017.1305949. Epub 2017 Apr 26.

Abstract

Magnetic stimulation is a non-invasive neurostimulation technique that can evoke action potentials and modulate neural circuits through induced electric fields. Biophysical models of magnetic stimulation have become a major driver for technological developments and the understanding of the mechanisms of magnetic neurostimulation and neuromodulation. Major technological developments involve stimulation coils with different spatial characteristics and pulse sources to control the pulse waveform. While early technological developments were the result of manual design and invention processes, there is a trend in both stimulation coil and pulse source design to mathematically optimize parameters with the help of computational models. To date, macroscopically highly realistic spatial models of the brain, as well as peripheral targets, and user-friendly software packages enable researchers and practitioners to simulate the treatment-specific and induced electric field distribution in the brains of individual subjects and patients. Neuron models further introduce the microscopic level of neural activation to understand the influence of activation dynamics in response to different pulse shapes. A number of models that were designed for online calibration to extract otherwise covert information and biomarkers from the neural system recently form a third branch of modelling.

摘要

磁刺激是一种非侵入性神经刺激技术,它可以通过感应电场诱发动作电位并调节神经回路。磁刺激的生物物理模型已成为技术发展以及理解磁神经刺激和神经调节机制的主要驱动力。主要的技术发展包括具有不同空间特性的刺激线圈和用于控制脉冲波形的脉冲源。虽然早期的技术发展是手动设计和发明过程的结果,但在刺激线圈和脉冲源设计方面都有一个趋势,即借助计算模型对参数进行数学优化。迄今为止,宏观上高度逼真的大脑以及外周靶点的空间模型,以及用户友好的软件包,使研究人员和从业者能够模拟个体受试者和患者大脑中特定治疗和感应电场的分布。神经元模型进一步引入了神经激活的微观层面,以了解激活动力学对不同脉冲形状的响应影响。最近,一些为在线校准而设计的模型,用于从神经系统中提取其他隐蔽信息和生物标志物,形成了建模的第三个分支。

相似文献

1
The development and modelling of devices and paradigms for transcranial magnetic stimulation.
Int Rev Psychiatry. 2017 Apr;29(2):115-145. doi: 10.1080/09540261.2017.1305949. Epub 2017 Apr 26.
2
Design of transcranial magnetic stimulation coils with optimal trade-off between depth, focality, and energy.
J Neural Eng. 2018 Aug;15(4):046033. doi: 10.1088/1741-2552/aac967. Epub 2018 Jun 1.
6
Redesigning existing transcranial magnetic stimulation coils to reduce energy: application to low field magnetic stimulation.
J Neural Eng. 2018 Jun;15(3):036022. doi: 10.1088/1741-2552/aaa505. Epub 2018 Jan 4.
9
Design of TMS coils with reduced Lorentz forces: application to concurrent TMS-fMRI.
J Neural Eng. 2020 Feb 12;17(1):016056. doi: 10.1088/1741-2552/ab4ba2.
10
Coil optimisation for transcranial magnetic stimulation in realistic head geometry.
Brain Stimul. 2017 Jul-Aug;10(4):795-805. doi: 10.1016/j.brs.2017.04.001. Epub 2017 Apr 15.

引用本文的文献

1
Modulation-Enhanced Nearest-Level Quantization for a Wide Output Bandwidth.
IEEE Trans Power Electron. 2024 Mar;39(3):3289-3299. doi: 10.1109/tpel.2023.3338109. Epub 2023 Nov 30.
2
Advances in the Regulation of Neural Function by Infrared Light.
Int J Mol Sci. 2024 Jan 11;25(2):928. doi: 10.3390/ijms25020928.
3
The complex landscape of TMS devices: A brief overview.
PLoS One. 2023 Nov 28;18(11):e0292733. doi: 10.1371/journal.pone.0292733. eCollection 2023.
4
Fast and accurate computational E-field dosimetry for group-level transcranial magnetic stimulation targeting.
Comput Biol Med. 2023 Dec;167:107614. doi: 10.1016/j.compbiomed.2023.107614. Epub 2023 Oct 25.
7
Closed-loop optimal and automatic tuning of pulse amplitude and width in EMG-guided controllable transcranial magnetic stimulation.
Biomed Eng Lett. 2022 Dec 30;13(2):119-127. doi: 10.1007/s13534-022-00259-3. eCollection 2023 May.
10
Modeling transcranial magnetic stimulation coil with magnetic cores.
J Neural Eng. 2023 Jan 25;20(1):016028. doi: 10.1088/1741-2552/acae0d.

本文引用的文献

2
Quiet transcranial magnetic stimulation: Status and future directions.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:226-9. doi: 10.1109/EMBC.2015.7318341.
3
Mechanisms of sodium channel clustering and its influence on axonal impulse conduction.
Cell Mol Life Sci. 2016 Feb;73(4):723-35. doi: 10.1007/s00018-015-2081-1. Epub 2015 Oct 29.
4
5
The Nodes of Ranvier: Molecular Assembly and Maintenance.
Cold Spring Harb Perspect Biol. 2015 Sep 9;8(3):a020495. doi: 10.1101/cshperspect.a020495.
6
Effects of frequency-dependent membrane capacitance on neural excitability.
J Neural Eng. 2015 Oct;12(5):056015-56015. doi: 10.1088/1741-2560/12/5/056015. Epub 2015 Sep 8.
7
Electric field navigated transcranial magnetic stimulation for chronic tinnitus: A pilot study.
Int J Audiol. 2015;54(12):899-909. doi: 10.3109/14992027.2015.1054041. Epub 2015 Jun 18.
10
The coil orientation dependency of the electric field induced by TMS for M1 and other brain areas.
J Neuroeng Rehabil. 2015 May 17;12:47. doi: 10.1186/s12984-015-0036-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验