Suppr超能文献

针对群体水平经颅磁刺激靶向的快速准确计算电场剂量学。

Fast and accurate computational E-field dosimetry for group-level transcranial magnetic stimulation targeting.

机构信息

Elmore Family School of Electrical and Computer Engineering, Purdue University, 465, Northwestern Ave, West Lafayette, 47907, IN, USA.

出版信息

Comput Biol Med. 2023 Dec;167:107614. doi: 10.1016/j.compbiomed.2023.107614. Epub 2023 Oct 25.

Abstract

Transcranial magnetic stimulation (TMS) is used to study brain function and treat mental health disorders. During TMS, a coil placed on the scalp induces an E-field in the brain that modulates its activity. TMS is known to stimulate regions that are exposed to a large E-field. Clinical TMS protocols prescribe a coil placement based on scalp landmarks. There are inter-individual variations in brain anatomy that result in variations in the TMS-induced E-field at the targeted region and its outcome. These variations across individuals could in principle be minimized by developing a large database of head subjects and determining scalp landmarks that maximize E-field at the targeted brain region while minimizing its variation using computational methods. However, this approach requires repeated execution of a computational method to determine the E-field induced in the brain for a large number of subjects and coil placements. We developed a probabilistic matrix decomposition-based approach for rapidly evaluating the E-field induced during TMS for a large number of coil placements due to a pre-defined coil model. Our approach can determine the E-field induced in over 1 Million coil placements in 9.5 h, in contrast, to over 5 years using a brute-force approach. After the initial set-up stage, the E-field can be predicted over the whole brain within 2-3 ms and to 2% accuracy. We tested our approach in over 200 subjects and achieved an error of <2% in most and <3.5% in all subjects. We will present several examples of bench-marking analysis for our tool in terms of accuracy and speed. Furthermore, we will show the methods' applicability for group-level optimization of coil placement for illustration purposes only. The software implementation link is provided in the appendix.

摘要

经颅磁刺激(TMS)用于研究大脑功能和治疗心理健康障碍。在 TMS 过程中,放置在头皮上的线圈会在大脑中产生 E 场,从而调节其活动。TMS 已知会刺激暴露在大 E 场中的区域。临床 TMS 方案根据头皮标志规定线圈位置。大脑解剖结构存在个体间差异,导致目标区域 TMS 诱导的 E 场及其结果存在差异。通过开发包含大量头部对象的数据库并使用计算方法确定最大限度地提高目标大脑区域 E 场并最小化其变异性的头皮标志,可以在原则上最小化个体间的这些差异。然而,这种方法需要重复执行计算方法,以确定针对大量对象和线圈位置在大脑中诱导的 E 场。我们开发了一种基于概率矩阵分解的方法,用于快速评估由于预定义的线圈模型,针对大量线圈位置在 TMS 期间诱导的 E 场。我们的方法可以在 9.5 小时内确定超过 100 万个线圈位置诱导的 E 场,相比之下,使用暴力方法需要超过 5 年。在初始设置阶段之后,可以在 2-3 毫秒内以 2%的精度预测整个大脑中的 E 场。我们在超过 200 名受试者中测试了我们的方法,并在大多数受试者中达到<2%的误差,在所有受试者中达到<3.5%的误差。我们将展示几个关于我们的工具在准确性和速度方面的基准分析示例。此外,我们将展示该方法仅用于说明目的的线圈位置组级优化的适用性。软件实现链接在附录中提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc00/10880124/3c8fdb69e36f/nihms-1940071-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验