Suppr超能文献

具有短回波时间的无失真扩散张量成像的涡流补偿凸优化扩散编码(EN-CODE)。

Eddy current-nulled convex optimized diffusion encoding (EN-CODE) for distortion-free diffusion tensor imaging with short echo times.

机构信息

Department of Radiological Sciences, University of California, Los Angeles, California, USA.

Biomedical Physics Interdepartmental Program, University of California, Los Angeles, California, USA.

出版信息

Magn Reson Med. 2018 Feb;79(2):663-672. doi: 10.1002/mrm.26709. Epub 2017 Apr 25.

Abstract

PURPOSE

To design and evaluate eddy current-nulled convex optimized diffusion encoding (EN-CODE) gradient waveforms for efficient diffusion tensor imaging (DTI) that is free of eddy current-induced image distortions.

METHODS

The EN-CODE framework was used to generate diffusion-encoding waveforms that are eddy current-compensated. The EN-CODE DTI waveform was compared with the existing eddy current-nulled twice refocused spin echo (TRSE) sequence as well as monopolar (MONO) and non-eddy current-compensated CODE in terms of echo time (TE) and image distortions. Comparisons were made in simulations, phantom experiments, and neuro imaging in 10 healthy volunteers.

RESULTS

The EN-CODE sequence achieved eddy current compensation with a significantly shorter TE than TRSE (78 versus 96 ms) and a slightly shorter TE than MONO (78 versus 80 ms). Intravoxel signal variance was lower in phantoms with EN-CODE than with MONO (13.6 ± 11.6 versus 37.4 ± 25.8) and not different from TRSE (15.1 ± 11.6), indicating good robustness to eddy current-induced image distortions. Mean fractional anisotropy values in brain edges were also significantly lower with EN-CODE than with MONO (0.16 ± 0.01 versus 0.24 ± 0.02, P < 1 x 10 ) and not different from TRSE (0.16 ± 0.01 versus 0.16 ± 0.01, P = nonsignificant).

CONCLUSIONS

The EN-CODE sequence eliminated eddy current-induced image distortions in DTI with a TE comparable to MONO and substantially shorter than TRSE. Magn Reson Med 79:663-672, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

摘要

目的

设计并评估用于高效弥散张量成像(DTI)的涡流补偿凸优化弥散编码(EN-CODE)梯度波形,该技术可消除涡流引起的图像失真。

方法

采用 EN-CODE 框架生成涡流补偿的弥散编码波形。从回波时间(TE)和图像失真两方面,将 EN-CODE DTI 序列与现有的涡流补偿双反转聚焦自旋回波(TRSE)序列以及单极(MONO)和非涡流补偿 CODE 序列进行比较。在 10 名健康志愿者的模拟、体模实验和神经成像中进行了比较。

结果

EN-CODE 序列实现了涡流补偿,TE 明显短于 TRSE(78 对 96 ms),略短于 MONO(78 对 80 ms)。EN-CODE 体模的体素内信号方差低于 MONO(13.6±11.6 对 37.4±25.8),与 TRSE 无差异(15.1±11.6),表明对涡流引起的图像失真具有良好的鲁棒性。脑边缘的平均各向异性分数值也明显低于 MONO(0.16±0.01 对 0.24±0.02,P<1×10),与 TRSE 无差异(0.16±0.01 对 0.16±0.01,P=非显著)。

结论

EN-CODE 序列在 DTI 中消除了涡流引起的图像失真,TE 与 MONO 相当,明显短于 TRSE。磁共振医学 79:663-672,2018。©2017 国际磁共振学会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验