Dall'Armellina Erica, Ennis Daniel B, Axel Leon, Croisille Pierre, Ferreira Pedro F, Gotschy Alexander, Lohr David, Moulin Kevin, Nguyen Christopher T, Nielles-Vallespin Sonja, Romero William, Scott Andrew D, Stoeck Christian, Teh Irvin, Tunnicliffe Elizabeth M, Viallon Magalie, Wang Victoria, Young Alistair A, Schneider Jürgen E, Sosnovik David E
Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, UK.
Department of Radiology, Stanford University, Stanford, California, USA.
J Cardiovasc Magn Reson. 2024 Oct 22;27(1):101109. doi: 10.1016/j.jocmr.2024.101109.
Thanks to recent developments in cardiovascular magnetic resonance (CMR), cardiac diffusion-weighted magnetic resonance is fast emerging in a range of clinical applications. Cardiac diffusion-weighted imaging (cDWI) and diffusion tensor imaging (cDTI) now enable investigators and clinicians to assess and quantify the tridimensional microstructure of the heart. Free-contrast DWI is uniquely sensitized to the presence and displacement of water molecules within the myocardial tissue, including the intracellular, extracellular, and intravascular spaces. CMR can determine changes in microstructure by quantifying: a) mean diffusivity (MD)-measuring the magnitude of diffusion; b) fractional anisotropy (FA)-specifying the directionality of diffusion; c) helix angle (HA) and transverse angle (TA)-indicating the orientation of the cardiomyocytes; d) absolute sheetlet angle (E2A) and E2A mobility-measuring the alignment and systolic-diastolic mobility of the sheetlets, respectively. This document provides recommendations for both clinical and research cDWI and cDTI, based on published evidence when available and expert consensus when not. It introduces the cardiac microstructure focusing on the cardiomyocytes and their role in cardiac physiology and pathophysiology. It highlights methods, observations, and recommendations in terminology, acquisition schemes, postprocessing pipelines, data analysis, and interpretation of the different biomarkers. Despite the ongoing challenges discussed in the document and the need for ongoing technical improvements, it is clear that cDTI is indeed feasible, can be accurately and reproducibly performed and, most importantly, can provide unique insights into myocardial pathophysiology.
得益于心血管磁共振(CMR)的最新进展,心脏扩散加权磁共振在一系列临床应用中迅速兴起。心脏扩散加权成像(cDWI)和扩散张量成像(cDTI)现在使研究人员和临床医生能够评估和量化心脏的三维微观结构。自由对比DWI对心肌组织内水分子的存在和位移具有独特的敏感性,包括细胞内、细胞外和血管内空间。CMR可以通过量化以下指标来确定微观结构的变化:a)平均扩散率(MD)——测量扩散的大小;b)分数各向异性(FA)——指定扩散的方向性;c)螺旋角(HA)和横向角(TA)——指示心肌细胞的方向;d)绝对薄片角(E2A)和E2A迁移率——分别测量薄片的排列和收缩-舒张迁移率。本文档基于现有已发表证据以及在无相关证据时的专家共识,为临床和研究用的cDWI和cDTI提供建议。它介绍了以心肌细胞及其在心脏生理和病理生理中的作用为重点的心脏微观结构。它突出了在术语、采集方案、后处理流程、数据分析以及不同生物标志物解释方面的方法、观察结果和建议。尽管本文档中讨论了持续存在的挑战以及对持续技术改进的需求,但很明显cDTI确实是可行的,可以准确且可重复地进行,并且最重要的是,可以为心肌病理生理学提供独特的见解。