Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.
Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland.
Magn Reson Med. 2022 Dec;88(6):2378-2394. doi: 10.1002/mrm.29378. Epub 2022 Aug 2.
Very high gradient amplitudes played out over extended time intervals as required for second-order motion-compensated cardiac DTI may violate the assumption of a linear time-invariant gradient system model. The aim of this work was to characterize diffusion gradient-related system nonlinearity and propose a correction approach for echo-planar and spiral spin-echo motion-compensated cardiac DTI.
Diffusion gradient-induced eddy currents of 9 diffusion directions were characterized at b values of 150 s/mm and 450 s/mm for a 1.5 Tesla system and used to correct phantom, ex vivo, and in vivo motion-compensated cardiac DTI data acquired with echo-planar and spiral trajectories. Predicted trajectories were calculated using gradient impulse response function and diffusion gradient strength- and direction-dependent zeroth- and first-order eddy current responses. A reconstruction method was implemented using the predicted -space trajectories to additionally include off-resonances and concomitant fields. Resulting images were compared to a reference reconstruction omitting diffusion gradient-induced eddy current correction.
Diffusion gradient-induced eddy currents exhibited nonlinear effects when scaling up the gradient amplitude and could not be described by a 3D basis alone. This indicates that a gradient impulse response function does not suffice to describe diffusion gradient-induced eddy currents. Zeroth- and first-order diffusion gradient-induced eddy current effects of up to -1.7 rad and -16 to +12 rad/m, respectively, were identified. Zeroth- and first-order diffusion gradient-induced eddy current correction yielded improved image quality upon image reconstruction.
The proposed approach offers correction of diffusion gradient-induced zeroth- and first-order eddy currents, reducing image distortions to promote improvements of second-order motion-compensated spin-echo cardiac DTI.
二阶运动补偿心脏 DTI 所需的长时间间隔内的超高梯度幅度可能违反线性时不变梯度系统模型的假设。本研究的目的是描述扩散梯度相关的系统非线性,并提出一种用于平面回波和螺旋自旋回波运动补偿心脏 DTI 的校正方法。
在 1.5T 系统中,对 9 个扩散方向的扩散梯度感应涡流在 b 值为 150 s/mm 和 450 s/mm 时进行了特征描述,并用于校正体模、离体和体内运动补偿心脏 DTI 数据,这些数据是使用平面回波和螺旋轨迹采集的。使用梯度脉冲响应函数和扩散梯度强度和方向相关的零阶和一阶涡流响应来计算预测轨迹。使用预测的 -空间轨迹实现了一种重建方法,以进一步包括离共振和伴随场。将所得图像与省略扩散梯度感应涡流校正的参考重建进行比较。
当放大梯度幅度时,扩散梯度感应涡流表现出非线性效应,不能仅用 3D 基来描述。这表明梯度脉冲响应函数不足以描述扩散梯度感应涡流。确定了高达 -1.7 弧度和 -16 到+12 弧度/m 的零阶和一阶扩散梯度感应涡流效应。零阶和一阶扩散梯度感应涡流校正可在图像重建时提高图像质量。
所提出的方法提供了对扩散梯度感应零阶和一阶涡流的校正,减少了图像失真,从而促进了二阶运动补偿自旋回波心脏 DTI 的改进。