Suppr超能文献

用于涡流归零凸优化扩散编码的预激发梯度(Pre-ENCODE)。

Pre-excitation gradients for eddy current nulled convex optimized diffusion encoding (Pre-ENCODE).

作者信息

Middione Matthew J, Loecher Michael, Cao Xiaozhi, Setsompop Kawin, Ennis Daniel B

机构信息

Department of Radiology, Stanford University, Stanford, California.

Department of Electrical Engineering, Stanford University, Stanford, California.

出版信息

Magn Reson Med. 2024 Aug;92(2):573-585. doi: 10.1002/mrm.30068. Epub 2024 Mar 19.

Abstract

PURPOSE

To evaluate the use of pre-excitation gradients for eddy current-nulled convex optimized diffusion encoding (Pre-ENCODE) to mitigate eddy current-induced image distortions in diffusion-weighted MRI (DWI).

METHODS

DWI sequences using monopolar (MONO), ENCODE, and Pre-ENCODE were evaluated in terms of the minimum achievable echo time (TE ) and eddy current-induced image distortions using simulations, phantom experiments, and in vivo DWI in volunteers ( ).

RESULTS

Pre-ENCODE provided a shorter TE than MONO (71.0 17.7ms vs. 77.6 22.9ms) and ENCODE (71.0 17.7ms vs. 86.2 14.2ms) in 100 of the simulated cases for a commercial 3T MRI system with b-values ranging from 500 to 3000 s/mm and in-plane spatial resolutions ranging from 1.0 to 3.0mm . Image distortion was estimated by intravoxel signal variance between diffusion encoding directions near the phantom edges and was significantly lower with Pre-ENCODE than with MONO (10.1 vs. 22.7 , ) and comparable to ENCODE (10.1 vs. 10.4 , ). In vivo measurements of apparent diffusion coefficients were similar in global brain pixels (0.37 [0.28,1.45] mm /s vs. 0.38 [0.28,1.45] mm /s, ) and increased in edge brain pixels (0.80 [0.17,1.49] mm /s vs. 0.70 [0.18,1.48] mm /s, ) for MONO compared to Pre-ENCODE.

CONCLUSION

Pre-ENCODE mitigated eddy current-induced image distortions for diffusion imaging with a shorter TE than MONO and ENCODE.

摘要

目的

评估预激发梯度用于涡流消除凸优化扩散编码(Pre - ENCODE)以减轻扩散加权磁共振成像(DWI)中涡流引起的图像失真的效果。

方法

使用单极(MONO)、ENCODE和Pre - ENCODE的DWI序列,通过模拟、体模实验以及志愿者的体内DWI,从可实现的最短回波时间(TE)和涡流引起的图像失真方面进行评估。

结果

对于商业3T磁共振成像系统,在b值范围为500至3000 s/mm²且面内空间分辨率范围为1.0至3.0mm²的100个模拟案例中,Pre - ENCODE提供的TE比MONO(71.0±17.7ms对77.6±22.9ms)和ENCODE(71.0±17.7ms对86.2±14.2ms)更短。通过体模边缘附近扩散编码方向之间的体素内信号方差估计图像失真,Pre - ENCODE的图像失真明显低于MONO(10.1对22.7,P<0.05),且与ENCODE相当(10.1对10.4,P>0.05)。与Pre - ENCODE相比,MONO在全脑像素中的表观扩散系数体内测量值相似(0.37[0.28,1.45]×10⁻³mm²/s对0.38[0.28,1.45]×10⁻³mm²/s,P>0.05),而在边缘脑像素中增加(0.80[0.17,1.49]×10⁻³mm²/s对0.70[0.18,1.48]×10⁻³mm²/s,P<0.05)。

结论

Pre - ENCODE减轻了扩散成像中涡流引起的图像失真,且其TE比MONO和ENCODE更短。

相似文献

1
Pre-excitation gradients for eddy current nulled convex optimized diffusion encoding (Pre-ENCODE).
Magn Reson Med. 2024 Aug;92(2):573-585. doi: 10.1002/mrm.30068. Epub 2024 Mar 19.
3
Validation of daily 0.35 T diffusion-weighted MRI for MRI-guided glioblastoma radiotherapy.
Med Phys. 2024 Aug;51(8):5386-5398. doi: 10.1002/mp.17067. Epub 2024 Apr 8.
4
Prostate diffusion MRI with minimal echo time using eddy current nulled convex optimized diffusion encoding.
J Magn Reson Imaging. 2020 May;51(5):1526-1539. doi: 10.1002/jmri.26960. Epub 2019 Oct 18.
6
Pros and Cons of High-Performance Gradient Enabled Short-TE Prostate DWI: A Prospective Study.
Invest Radiol. 2025 Sep 1;60(9):592-601. doi: 10.1097/RLI.0000000000001171.
7
Spherical echo-planar time-resolved imaging (sEPTI) for rapid 3D quantitative and susceptibility imaging.
Magn Reson Med. 2025 Jan;93(1):121-137. doi: 10.1002/mrm.30255. Epub 2024 Sep 9.
8
Precision of liver and pancreas apparent diffusion coefficients using motion-compensated gradient waveforms in DWI.
Magn Reson Imaging. 2024 Jul;110:161-169. doi: 10.1016/j.mri.2024.04.026. Epub 2024 Apr 18.
9
Characterizing Breast Tumor Heterogeneity Through IVIM-DWI Parameters and Signal Decay Analysis.
Diagnostics (Basel). 2025 Jun 12;15(12):1499. doi: 10.3390/diagnostics15121499.
10
Effect of inaccurate b-values from imaging gradients on intravoxel incoherent motion.
Magn Reson Med. 2025 Oct;94(4):1514-1528. doi: 10.1002/mrm.30579. Epub 2025 Jun 2.

本文引用的文献

1
A gradient optimization toolbox for general purpose time-optimal MRI gradient waveform design.
Magn Reson Med. 2020 Dec;84(6):3234-3245. doi: 10.1002/mrm.28384. Epub 2020 Jul 7.
2
Optimization methods for magnetic resonance imaging gradient waveform design.
NMR Biomed. 2020 Dec;33(12):e4308. doi: 10.1002/nbm.4308. Epub 2020 Apr 27.
3
Eddy current nulled constrained optimization of isotropic diffusion encoding gradient waveforms.
Magn Reson Med. 2019 Mar;81(3):1818-1832. doi: 10.1002/mrm.27539. Epub 2018 Oct 10.
7
Correction for Eddy Current-Induced Echo-Shifting Effect in Partial-Fourier Diffusion Tensor Imaging.
Biomed Res Int. 2015;2015:185026. doi: 10.1155/2015/185026. Epub 2015 Aug 30.
8
Prospective and retrospective high order eddy current mitigation for diffusion weighted echo planar imaging.
Magn Reson Med. 2013 Nov;70(5):1293-305. doi: 10.1002/mrm.24589. Epub 2013 Jan 16.
9
Twenty-five pitfalls in the analysis of diffusion MRI data.
NMR Biomed. 2010 Aug;23(7):803-20. doi: 10.1002/nbm.1543.
10
Double-spin-echo diffusion weighting with a modified eddy current adjustment.
Magn Reson Imaging. 2010 Apr;28(3):434-40. doi: 10.1016/j.mri.2009.12.004. Epub 2010 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验