Lee Kristen B, Kelbauskas Laimonas, Brunner Alan, Meldrum Deirdre R
Biodesign Institute, Arizona State University, Tempe, AZ, United States of America.
PLoS One. 2017 Apr 26;12(4):e0176079. doi: 10.1371/journal.pone.0176079. eCollection 2017.
Intercellular interactions play a central role at the tissue and whole organism level modulating key cellular functions in normal and disease states. Studies of cell-cell communications are challenging due to ensemble averaging effects brought about by intrinsic heterogeneity in cellular function which requires such studies to be conducted with small populations of cells. Most of the current methods for producing and studying such small cell populations are complex to implement and require skilled personnel limiting their widespread utility in biomedical research labs. We present a simple and rapid method to produce small populations with varying size of epithelial cells (10-50 cells/population) with high-throughput (~ 1 population/second) on flat surfaces via patterning of extracellular matrix (ECM) proteins and random seeding of cells. We demonstrate that despite inherent limitations of non-contact, drop-on-demand piezoelectric inkjet printing for protein patterning, varying mixtures of ECM proteins can be deposited with high reproducibility and level of control on glass substrates using a set of dynamically adjustable optimized deposition parameters. We demonstrate high consistency for the number of cells per population (1 cell standard error of mean), the population's size (0.2 coefficient of variation) and shape, as well as accurate spatial placement of and distance between colonies of a panel of metaplastic and dysplastic esophageal epithelial cells with differing adhesion and motility characteristics. The number of cells per colony, colony size and shape can be varied by dynamically varying the amount of ECM proteins deposited per spatial location and the number of spatial locations on the substrate. The method is applicable to a broad range of biological and biomedical studies including cell-cell communications, cellular microenvironment, migration, and stimulus response.
细胞间相互作用在组织和整个生物体水平发挥核心作用,在正常和疾病状态下调节关键细胞功能。由于细胞功能内在异质性带来的总体平均效应,细胞间通讯研究具有挑战性,这要求此类研究在少量细胞群体中进行。目前大多数用于产生和研究此类小细胞群体的方法实施起来很复杂,需要技术人员,限制了它们在生物医学研究实验室中的广泛应用。我们提出了一种简单快速的方法,通过细胞外基质(ECM)蛋白的图案化和细胞的随机接种,在平面上以高通量(约每秒1个群体)产生大小不同的上皮细胞小群体(每个群体10 - 50个细胞)。我们证明,尽管非接触按需滴下式压电喷墨打印用于蛋白质图案化存在固有局限性,但使用一组动态可调的优化沉积参数,可以在玻璃基板上以高重现性和控制水平沉积不同混合比例的ECM蛋白。我们证明了每个群体的细胞数量(平均标准误差约为1个细胞)、群体大小(变异系数约为0.2)和形状具有高度一致性,以及一组具有不同黏附性和运动性特征的化生和发育异常食管上皮细胞菌落的准确空间位置和菌落之间的距离。通过动态改变每个空间位置沉积的ECM蛋白量和基板上的空间位置数量,可以改变每个菌落的细胞数量、菌落大小和形状。该方法适用于广泛的生物学和生物医学研究,包括细胞间通讯、细胞微环境、迁移和刺激反应。