Sun Chenghao, Xu Boxiao, Huang Liang, Zhang Wenzhen
Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
The University of Waikato Joint Institute, Hangzhou City University, Hangzhou, 310015, China.
Sci Rep. 2025 Aug 22;15(1):30885. doi: 10.1038/s41598-025-16296-8.
Cell patterning technology faces critical limitations in dynamic control, biocompatibility, and structural stability for reconstructing native tissues. Here, we establish an acoustic-hydrogel integration strategy that overcomes these challenges through synergistic physical-biological programming. Experimental validation using particle/red blood cells-patterned hydrogels demonstrated exceptional structural stability under physiological conditions. Fiber-optic spectroscopic sensing technology enabled long-term monitoring of the ex vivo deoxygenation process in patterned red blood cells. The "pattern-and-lock" paradigm fundamentally resolves the stability-biocompatibility trade-off by decoupling acoustic manipulation from hydrogel curing. Its translational significance spans precision transfusion platforms for red blood cells functionality screening and label-free microtissue models capturing dynamic metabolic processes. By converging acoustic programmability with hydrogel biofunctionality, this work provides a scalable biomanufacturing platform validated for next-generation tissue models and clinical diagnostics.
细胞图案化技术在重建天然组织的动态控制、生物相容性和结构稳定性方面面临着关键限制。在此,我们建立了一种声-水凝胶整合策略,通过协同物理-生物编程克服了这些挑战。使用粒子/红细胞图案化水凝胶的实验验证表明,在生理条件下具有出色的结构稳定性。光纤光谱传感技术能够对图案化红细胞的体外脱氧过程进行长期监测。“图案化并锁定”范式通过将声学操纵与水凝胶固化解耦,从根本上解决了稳定性-生物相容性之间的权衡。其转化意义涵盖用于红细胞功能筛选的精密输血平台以及捕获动态代谢过程的无标记微组织模型。通过将声学可编程性与水凝胶生物功能相结合,这项工作提供了一个经过验证的可扩展生物制造平台,用于下一代组织模型和临床诊断。