Saporito-Magriñá Christian, Musacco-Sebio Rosario, Acosta Juan M, Bajicoff Sofía, Paredes-Fleitas Paola, Reynoso Sofia, Boveris Alberto, Repetto Marisa G
Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, C1113AAD Buenos Aires, Argentina.
Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, C1113AAD Buenos Aires, Argentina..
J Inorg Biochem. 2017 Jul;172:94-99. doi: 10.1016/j.jinorgbio.2017.04.012. Epub 2017 Apr 19.
Rat liver mitochondria (1.5-2.1mg protein·mL) supplemented with either 25 and 100μM Cu or 100 and 500μM Fe show inhibition of active respiration (O consumption in state 3) and increased phospholipid peroxidation . Liver mitochondria were supplemented with the antioxidants reduced glutathione, N-acetylcysteine or butylated hydroxitoluene, to evaluate their effects on the above-mentioned alterations. Although the mitochondrial dysfunction is clearly associated to phospholipid peroxidation, the different responses to antioxidant supplementation indicate that the metal ions have differences in their mechanisms of toxicity. Mitochondrial phospholipid peroxidation through the formation of hydroxyl radical by a Fenton/Haber-Weiss mechanism seems to precede the respiratory inhibition and to be the main fact in Fe-induced mitochondrial dysfunction. In the case of Cu, it seems that the ion oxidizes glutathione, and low molecular weight protein thiol groups in a direct reaction, as part of its intracellular redox cycling. The processes involving phospholipid peroxidation, protein oxidation and mitochondrial respiratory inhibition characterize a redox dyshomeostatic situation that ultimately leads to cell death. However, Cu exposure involves an additional, yet unidentified, toxic event as previous reduction of the metal with N-acetylcysteine has only a minor effect in preventing the mitochondrial damage.
用25μM和100μM的铜或100μM和500μM的铁补充的大鼠肝脏线粒体(1.5 - 2.1mg蛋白质·mL)表现出活性呼吸抑制(状态3下的氧气消耗)以及磷脂过氧化增加。用抗氧化剂还原型谷胱甘肽、N - 乙酰半胱氨酸或丁基化羟基甲苯补充肝脏线粒体,以评估它们对上述改变的影响。尽管线粒体功能障碍明显与磷脂过氧化有关,但对抗氧化剂补充的不同反应表明金属离子的毒性机制存在差异。通过芬顿/哈伯 - 魏斯机制形成羟基自由基导致的线粒体磷脂过氧化似乎先于呼吸抑制,并且是铁诱导的线粒体功能障碍的主要因素。就铜而言,似乎离子在其细胞内氧化还原循环过程中直接氧化谷胱甘肽和低分子量蛋白质的巯基基团。涉及磷脂过氧化、蛋白质氧化和线粒体呼吸抑制的过程表征了一种氧化还原稳态失调的情况,最终导致细胞死亡。然而,铜暴露涉及另一个尚未明确的毒性事件,因为之前用N - 乙酰半胱氨酸还原金属对预防线粒体损伤的作用很小。