文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在单细胞和 FFPE 组织样本中进行全基因组 DNase I 超敏位点检测。

Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples.

机构信息

Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.

Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.

出版信息

Nature. 2015 Dec 3;528(7580):142-6. doi: 10.1038/nature15740.


DOI:10.1038/nature15740
PMID:26605532
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4697938/
Abstract

DNase I hypersensitive sites (DHSs) provide important information on the presence of transcriptional regulatory elements and the state of chromatin in mammalian cells. Conventional DNase sequencing (DNase-seq) for genome-wide DHSs profiling is limited by the requirement of millions of cells. Here we report an ultrasensitive strategy, called single-cell DNase sequencing (scDNase-seq) for detection of genome-wide DHSs in single cells. We show that DHS patterns at the single-cell level are highly reproducible among individual cells. Among different single cells, highly expressed gene promoters and enhancers associated with multiple active histone modifications display constitutive DHS whereas chromatin regions with fewer histone modifications exhibit high variation of DHS. Furthermore, the single-cell DHSs predict enhancers that regulate cell-specific gene expression programs and the cell-to-cell variations of DHS are predictive of gene expression. Finally, we apply scDNase-seq to pools of tumour cells and pools of normal cells, dissected from formalin-fixed paraffin-embedded tissue slides from patients with thyroid cancer, and detect thousands of tumour-specific DHSs. Many of these DHSs are associated with promoters and enhancers critically involved in cancer development. Analysis of the DHS sequences uncovers one mutation (chr18: 52417839G>C) in the tumour cells of a patient with follicular thyroid carcinoma, which affects the binding of the tumour suppressor protein p53 and correlates with decreased expression of its target gene TXNL1. In conclusion, scDNase-seq can reliably detect DHSs in single cells, greatly extending the range of applications of DHS analysis both for basic and for translational research, and may provide critical information for personalized medicine.

摘要

DNase I 超敏位点 (DHSs) 为哺乳动物细胞中转录调控元件的存在和染色质状态提供了重要信息。用于全基因组 DHSs 分析的传统 DNase 测序 (DNase-seq) 受到需要数百万个细胞的限制。在这里,我们报告了一种称为单细胞 DNase 测序 (scDNase-seq) 的超灵敏策略,用于检测单细胞中的全基因组 DHSs。我们表明,单个细胞水平的 DHS 模式在个体细胞之间具有高度可重复性。在不同的单个细胞中,与多种活跃的组蛋白修饰相关的高表达基因启动子和增强子显示组成型 DHS,而具有较少组蛋白修饰的染色质区域则表现出 DHS 的高度变化。此外,单细胞 DHSs 预测了调节细胞特异性基因表达程序的增强子,并且 DHS 的单细胞间变化可预测基因表达。最后,我们将 scDNase-seq 应用于从甲状腺癌患者的福尔马林固定石蜡包埋组织切片中分离的肿瘤细胞和正常细胞的混合物中,并检测到数千个肿瘤特异性 DHSs。这些 DHSs 中的许多都与在癌症发展中起关键作用的启动子和增强子相关。对 DHS 序列的分析揭示了一名滤泡性甲状腺癌患者肿瘤细胞中的一个突变(chr18: 52417839G>C),该突变影响肿瘤抑制蛋白 p53 的结合,并与其靶基因 TXNL1 的表达降低相关。总之,scDNase-seq 可以可靠地检测单细胞中的 DHSs,极大地扩展了 DHS 分析在基础和转化研究中的应用范围,并可能为个性化医疗提供关键信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/37d0a2dc7904/nihms723562f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/fc96c52360b1/nihms723562f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/a4d4fb38d047/nihms723562f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/2fec4bd8a249/nihms723562f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/139cd7b9f820/nihms723562f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/c1f321293f20/nihms723562f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/6e75d139818a/nihms723562f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/e0a2aada7267/nihms723562f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/1297592669b2/nihms723562f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/52eafaadc81c/nihms723562f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/d2fbf5cf7e1b/nihms723562f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/971a9a5a66c6/nihms723562f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/290d7f23f16f/nihms723562f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/d8c37ad93002/nihms723562f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/37d0a2dc7904/nihms723562f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/fc96c52360b1/nihms723562f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/a4d4fb38d047/nihms723562f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/2fec4bd8a249/nihms723562f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/139cd7b9f820/nihms723562f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/c1f321293f20/nihms723562f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/6e75d139818a/nihms723562f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/e0a2aada7267/nihms723562f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/1297592669b2/nihms723562f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/52eafaadc81c/nihms723562f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/d2fbf5cf7e1b/nihms723562f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/971a9a5a66c6/nihms723562f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/290d7f23f16f/nihms723562f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/d8c37ad93002/nihms723562f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/4697938/37d0a2dc7904/nihms723562f4.jpg

相似文献

[1]
Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples.

Nature. 2015-12-3

[2]
Genome-wide mapping of DNase I hypersensitive sites in rare cell populations using single-cell DNase sequencing.

Nat Protoc. 2017-11

[3]
Histone H3K4me1 strongly activates the DNase I hypersensitive sites in super-enhancers than those in typical enhancers.

Biosci Rep. 2021-7-30

[4]
Open chromatin in plant genomes.

Cytogenet Genome Res. 2014

[5]
Genome-Wide Mapping of DNase I Hypersensitive Sites in Tomato.

Methods Mol Biol. 2018

[6]
The accessible chromatin landscape of the human genome.

Nature. 2012-9-6

[7]
Multiplex indexing approach for the detection of DNase I hypersensitive sites in single cells.

Nucleic Acids Res. 2021-6-4

[8]
Functional compensation among HMGN variants modulates the DNase I hypersensitive sites at enhancers.

Genome Res. 2015-9

[9]
Index and biological spectrum of human DNase I hypersensitive sites.

Nature. 2020-8

[10]
A single cell's open chromatin.

Nat Methods. 2016-1

引用本文的文献

[1]
Retrospective and multifactorial single-cell profiling reveals sequential chromatin reorganization during X inactivation.

Nat Cell Biol. 2025-7-10

[2]
Nucleosome organization of mouse embryos during pre-implantation development.

Sci Rep. 2025-7-1

[3]
Consecutive low-frequency shifts in A/T content denote nucleosome positions across microeukaryotes.

iScience. 2025-4-18

[4]
ISDH-seq: a robust methodology for profiling and characterization of open chromatin.

Plant Biotechnol J. 2025-7

[5]
Semi-automated IT-scATAC-seq profiles cell-specific chromatin accessibility in differentiation and peripheral blood populations.

Nat Commun. 2025-3-17

[6]
INSTINCT: Multi-sample integration of spatial chromatin accessibility sequencing data via stochastic domain translation.

Nat Commun. 2025-2-1

[7]
Unveiling Long Non-coding RNA Networks from Single-Cell Omics Data Through Artificial Intelligence.

Methods Mol Biol. 2025

[8]
Increased DNA damage in full-grown oocytes is correlated with diminished autophagy activation.

Nat Commun. 2024-11-1

[9]
Single-Cell RNA Sequencing and Combinatorial Approaches for Understanding Heart Biology and Disease.

Biology (Basel). 2024-9-30

[10]
Single-cell sequencing technology in skin wound healing.

Burns Trauma. 2024-10-23

本文引用的文献

[1]
Single-cell chromatin accessibility reveals principles of regulatory variation.

Nature. 2015-7-23

[2]
Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing.

Science. 2015-5-22

[3]
TXNL1 induces apoptosis in cisplatin resistant human gastric cancer cell lines.

Curr Cancer Drug Targets. 2015

[4]
Single-cell RNA-seq reveals dynamic paracrine control of cellular variation.

Nature. 2014-6-11

[5]
Depletion of a putatively druggable class of phosphatidylinositol kinases inhibits growth of p53-null tumors.

Cell. 2013-11-7

[6]
Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3.

Genome Biol. 2013

[7]
Super-enhancers in the control of cell identity and disease.

Cell. 2013-10-10

[8]
Expression and regulation of intergenic long noncoding RNAs during T cell development and differentiation.

Nat Immunol. 2013-9-22

[9]
Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity.

Genome Biol. 2013-4-17

[10]
Master transcription factors and mediator establish super-enhancers at key cell identity genes.

Cell. 2013-4-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索