Zeng Jian, Sheng Huajin, Liu Yang, Wang Yao, Wang Yi, Kang Houyang, Fan Xing, Sha Lina, Yuan Shu, Zhou Yonghong
College of Resources, Sichuan Agricultural UniversityWenjiang, China.
Institute of Natural Resources and Geographic Technology, Sichuan Agricultural UniversityWenjiang, China.
Front Plant Sci. 2017 Apr 12;8:569. doi: 10.3389/fpls.2017.00569. eCollection 2017.
Photoperiod and nutrient nitrogen (N) supply influence the growth, development, and productivity of crops. This study examined the physiological, biochemical, and morpho-anatomical traits of NA5 and NA9, two barley cultivars with contrasting photoperiod lengths, under the combined treatment of photoperiod regime and N supply. Under long photoperiod, high N supply decreased net photosynthesis; decreased chlorophyll a and chlorophyll a/b; decreased ascorbate peroxidase (APX), catalase (CAT), and superoxide dismutase (SOD) activities; decreased ascorbate, glutathione, soluble protein, and soluble sugar; destroyed mesophyll cell integrity; and increased [Formula: see text], malondialdehyde, and proline in both NA5 and NA9. Under short photoperiod, high N content increased net photosynthesis; increased chlorophyll a and chlorophyll a/b; increased APX, CAT, and SOD activities; and increased antioxidants, soluble protein, and soluble sugar in NA9 but decreased the same parameters in NA5. These results indicated that N supply strongly affected photosynthetic capacity and the balance of reactive oxygen species in response to short and long photoperiod. High N supply enhanced the sensitivity of long-day barley to photoperiod change by inhibiting photosynthesis and decreasing antioxidant defense ability. High N mitigated the undesirable effects of shortened photoperiod in short-day barley. Therefore, the data from this study revealed that N status affects adaptation to photoperiod changes by maintaining redox homeostasis and photosynthetic capacity.
光周期和养分氮(N)供应会影响作物的生长、发育和生产力。本研究考察了光周期长度不同的两个大麦品种NA5和NA9在光周期处理和氮供应联合处理下的生理、生化和形态解剖学特征。在长光周期下,高氮供应降低了净光合作用;降低了叶绿素a和叶绿素a/b;降低了抗坏血酸过氧化物酶(APX)、过氧化氢酶(CAT)和超氧化物歧化酶(SOD)的活性;降低了抗坏血酸、谷胱甘肽、可溶性蛋白和可溶性糖的含量;破坏了叶肉细胞的完整性;并增加了NA5和NA9中的[公式:见原文]、丙二醛和脯氨酸。在短光周期下,高氮含量增加了NA9的净光合作用;增加了叶绿素a和叶绿素a/b;增加了APX、CAT和SOD的活性;增加了抗氧化剂、可溶性蛋白和可溶性糖,但降低了NA5中的相同参数。这些结果表明,氮供应强烈影响光合能力和活性氧平衡以响应短光周期和长光周期。高氮供应通过抑制光合作用和降低抗氧化防御能力增强了长日照大麦对光周期变化的敏感性。高氮减轻了短日照大麦光周期缩短的不良影响。因此,本研究的数据表明,氮状态通过维持氧化还原稳态和光合能力来影响对光周期变化的适应性。