Suppr超能文献

预测创伤性颈脊髓损伤患者气管切开术的分类与回归树模型

Classification and regression tree model for predicting tracheostomy in patients with traumatic cervical spinal cord injury.

作者信息

Lee Dae-Sang, Park Chi-Min, Carriere Keumhee Chough, Ahn Joonghyun

机构信息

Department of Critical Care Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.

Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Republic of Korea.

出版信息

Eur Spine J. 2017 Sep;26(9):2333-2339. doi: 10.1007/s00586-017-5104-9. Epub 2017 Apr 26.

Abstract

PURPOSE

In patients with cervical spinal cord injury (CSCI), respiratory compromise and the need for tracheostomy are common. The purpose of this study was to identify common risk factors for tracheostomy following traumatic CSCI and develop a decision tree for tracheostomy in traumatic CSCI patients without pulmonary function test.

METHODS

Data of 105 trauma patients with CSCI admitted in our institution from April, 2008 to February, 2014 were retrospectively analyzed. Patients who underwent tracheostomy were compared to those who did not. Stepwise logistic regression analysis and classification and regression tree model were used to predict the risk factors for tracheostomy.

RESULTS

Tracheostomy was performed in 20% of patients with traumatic CSCI on median hospital day 4. Patients who underwent tracheostomy tended to be more severely injured (higher Injury Severity Score, lower Glasgow Coma Score, and lower systolic blood pressure on admission) which required more frequent intubation in the emergency room (ER) with a higher rate of complete CSCI compared to those who did not. Upon multiple logistic analysis, Age ≥ 55 years (OR: 6.86, p = 0.037), Car accident (OR: 5.8, p = 0.049), injury above C5 (OR: 28.95, p = 0.009), ISS ≥ 16 (OR: 12.6, p = 0.004), intubation in the ER (OR: 23.87, p = 0.001), and complete CSCI (OR: 62.14, p < 0.001) were significant predictors for the need of tracheostomy after CSCI. These factors can predict whether a new patient needs future tracheostomy with 91.4% accuracy.

CONCLUSIONS

Age ≥ 55 years, injury above C5, ISS ≥ 16, Car accident, intubation in the ER, and complete CSCI were independently associated with tracheostomy after CSCI. CART analysis may provide an intuitive decision tree for tracheostomy.

摘要

目的

在颈脊髓损伤(CSCI)患者中,呼吸功能受损及气管切开需求较为常见。本研究旨在确定创伤性CSCI后气管切开的常见危险因素,并为未进行肺功能测试的创伤性CSCI患者制定气管切开决策树。

方法

回顾性分析2008年4月至2014年2月在我院收治的105例创伤性CSCI患者的数据。将接受气管切开的患者与未接受气管切开的患者进行比较。采用逐步逻辑回归分析和分类回归树模型预测气管切开的危险因素。

结果

20%的创伤性CSCI患者在住院第4天接受了气管切开。与未接受气管切开的患者相比,接受气管切开的患者往往受伤更严重(入院时损伤严重程度评分更高、格拉斯哥昏迷评分更低、收缩压更低),在急诊室(ER)需要更频繁的插管,且完全性CSCI发生率更高。经过多因素逻辑分析,年龄≥55岁(OR:6.86,p = 0.037)、车祸(OR:5.8,p = 0.049)、C5以上损伤(OR:28.95,p = 0.009)、损伤严重程度评分(ISS)≥16(OR:12.6,p = 0.004)、在急诊室插管(OR:23.87,p = 0.001)和完全性CSCI(OR:62.14,p < 0.001)是CSCI后气管切开需求的显著预测因素。这些因素可预测新患者未来是否需要气管切开,准确率达91.4%。

结论

年龄≥55岁、C5以上损伤、ISS≥16、车祸、在急诊室插管和完全性CSCI与CSCI后气管切开独立相关。分类回归树分析可为气管切开提供直观的决策树。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验