Bharadwaj Gaurav, Nhan Viet, Yang ShanChao, Li Xiaocen, Narayanan Anand, Macarenco Ana Carolina, Shi Yu, Yang Darrion, Vieira Letícia Salvador, Xiao Wenwu, Li Yuanpei, Lam Kit S
Department of Biochemistry & Molecular Medicine, UC Davis Cancer Center, University of California Davis, Sacramento, CA 95817, USA.
Biology Department, California State University Channel Islands, Camarillo, CA 93012, USA.
Nanomedicine (Lond). 2017 May;12(10):1153-1164. doi: 10.2217/nnm-2017-0361. Epub 2017 Apr 27.
To structurally modify our existing cholic acid (CA)-based telodendrimer (TD; PEG-CA) for effective micellar nanoencapsulation and delivery of the US FDA-approved members of taxane family.
MATERIALS & METHODS: Generation of hybrid TDs was achieved by replacing four of the eight CAs with biocompatible organic moieties using solution-phase peptide synthesis. Drug loading was done using the standard evaporation method.
Hybrid TDs can generate micelles with narrow size distributions, low critical micelle concentration values (1-6 μM), better hematocompatibility and lack of in vitro cytotoxicity.
Along with PEG-CA, CA-based hybrid nanoplatform is the first of its kind that can stably encapsulate all three FDA-approved taxanes with nearly 100% efficiency up to 20% (w/w) loading.
对我们现有的基于胆酸(CA)的端接树枝状聚合物(TD;聚乙二醇-胆酸)进行结构修饰,以实现有效的胶束纳米包封,并递送美国食品药品监督管理局(US FDA)批准的紫杉烷家族成员。
使用溶液相肽合成法,用生物相容性有机部分取代八个CA中的四个,从而生成杂化TD。采用标准蒸发法进行药物负载。
杂化TD可生成尺寸分布窄、临界胶束浓度值低(1-6 μM)、血液相容性更好且无体外细胞毒性的胶束。
除了聚乙二醇-胆酸,基于CA的杂化纳米平台是同类中的首个,它能够以近100%的效率稳定包封所有三种FDA批准的紫杉烷,负载量高达20%(w/w)。