Suppr超能文献

用于递送美国食品药品监督管理局批准的紫杉烷类药物的基于胆酸的新型胶束纳米平台。

Cholic acid-based novel micellar nanoplatform for delivering FDA-approved taxanes.

作者信息

Bharadwaj Gaurav, Nhan Viet, Yang ShanChao, Li Xiaocen, Narayanan Anand, Macarenco Ana Carolina, Shi Yu, Yang Darrion, Vieira Letícia Salvador, Xiao Wenwu, Li Yuanpei, Lam Kit S

机构信息

Department of Biochemistry & Molecular Medicine, UC Davis Cancer Center, University of California Davis, Sacramento, CA 95817, USA.

Biology Department, California State University Channel Islands, Camarillo, CA 93012, USA.

出版信息

Nanomedicine (Lond). 2017 May;12(10):1153-1164. doi: 10.2217/nnm-2017-0361. Epub 2017 Apr 27.

Abstract

AIM

To structurally modify our existing cholic acid (CA)-based telodendrimer (TD; PEG-CA) for effective micellar nanoencapsulation and delivery of the US FDA-approved members of taxane family.

MATERIALS & METHODS: Generation of hybrid TDs was achieved by replacing four of the eight CAs with biocompatible organic moieties using solution-phase peptide synthesis. Drug loading was done using the standard evaporation method.

RESULTS

Hybrid TDs can generate micelles with narrow size distributions, low critical micelle concentration values (1-6 μM), better hematocompatibility and lack of in vitro cytotoxicity.

CONCLUSION

Along with PEG-CA, CA-based hybrid nanoplatform is the first of its kind that can stably encapsulate all three FDA-approved taxanes with nearly 100% efficiency up to 20% (w/w) loading.

摘要

目的

对我们现有的基于胆酸(CA)的端接树枝状聚合物(TD;聚乙二醇-胆酸)进行结构修饰,以实现有效的胶束纳米包封,并递送美国食品药品监督管理局(US FDA)批准的紫杉烷家族成员。

材料与方法

使用溶液相肽合成法,用生物相容性有机部分取代八个CA中的四个,从而生成杂化TD。采用标准蒸发法进行药物负载。

结果

杂化TD可生成尺寸分布窄、临界胶束浓度值低(1-6 μM)、血液相容性更好且无体外细胞毒性的胶束。

结论

除了聚乙二醇-胆酸,基于CA的杂化纳米平台是同类中的首个,它能够以近100%的效率稳定包封所有三种FDA批准的紫杉烷,负载量高达20%(w/w)。

相似文献

本文引用的文献

2
Treatment regimens of classical and newer taxanes.经典紫杉烷类和新型紫杉烷类的治疗方案。
Cancer Chemother Pharmacol. 2016 Feb;77(2):221-33. doi: 10.1007/s00280-015-2893-6. Epub 2015 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验