Suppr超能文献

通过全身给药的纳米药物原位接种诱导抗肿瘤 T 细胞免疫。

Induction of anti-cancer T cell immunity by in situ vaccination using systemically administered nanomedicines.

机构信息

Fischell Department of Bioengineering, A. James Clark Hall, Room 5110, 8278 Paint Branch Drive, College Park, MD, 20742, USA; Avidea Technologies, Baltimore, MD, 21205, USA.

Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague, Czech Republic.

出版信息

Cancer Lett. 2019 Sep 10;459:192-203. doi: 10.1016/j.canlet.2019.114427. Epub 2019 Jun 8.

Abstract

Patients with inadequate anti-cancer T cell responses experience limited benefit from immune checkpoint inhibitors and other immunotherapies that require T cells. Therefore, treatments that induce de novo anti-cancer T cell immunity are needed. One strategy - referred to as in situ vaccination - is to deliver chemotherapeutic or immunostimulatory drugs into tumors to promote cancer cell death and provide a stimulatory environment for priming T cells against antigens already present in the tumor. However, achieving sufficient drug concentrations in tumors without causing dose-limiting toxicities remains a major challenge. To address this challenge, nanomedicines based on nano-sized carriers ('nanocarriers') of chemotherapeutics and immunostimulants are being developed to improve drug accumulation in tumors following systemic (intravenous) administration. Herein, we present the rationale for using systemically administrable nanomedicines to induce anti-cancer T cell immunity via in situ vaccination and provide an overview of synthetic nanomedicines currently used clinically. We also describe general strategies for improving nanomedicine design to increase tumor uptake, including use of micelle- and star polymer-based nanocarriers. We conclude with perspectives for how nanomedicine properties, host factors and treatment combinations can be leveraged to maximize efficacy.

摘要

患者的抗肿瘤 T 细胞反应不足,从免疫检查点抑制剂和其他需要 T 细胞的免疫疗法中获益有限。因此,需要诱导新的抗肿瘤 T 细胞免疫的治疗方法。一种策略——称为原位疫苗接种——是将化疗药物或免疫刺激药物递送到肿瘤中,以促进癌细胞死亡,并为针对肿瘤中已存在抗原的 T 细胞提供刺激环境。然而,在不引起剂量限制毒性的情况下,在肿瘤中达到足够的药物浓度仍然是一个主要挑战。为了解决这一挑战,正在开发基于化疗药物和免疫刺激剂的纳米载体(“纳米载体”)的纳米药物,以改善系统(静脉内)给药后肿瘤内的药物积累。在此,我们提出了通过原位疫苗接种使用系统给药的纳米药物诱导抗肿瘤 T 细胞免疫的原理,并概述了目前临床上使用的合成纳米药物。我们还描述了用于提高纳米药物设计以增加肿瘤摄取的一般策略,包括使用胶束和星形聚合物纳米载体。最后,我们展望了如何利用纳米药物特性、宿主因素和治疗组合来最大限度地提高疗效。

相似文献

1
Induction of anti-cancer T cell immunity by in situ vaccination using systemically administered nanomedicines.
Cancer Lett. 2019 Sep 10;459:192-203. doi: 10.1016/j.canlet.2019.114427. Epub 2019 Jun 8.
2
Combining Nanomedicine and Immunotherapy.
Acc Chem Res. 2019 Jun 18;52(6):1543-1554. doi: 10.1021/acs.accounts.9b00148. Epub 2019 May 23.
3
Tumor-Targeted Nanomedicine for Immunotherapy.
Acc Chem Res. 2020 Dec 15;53(12):2765-2776. doi: 10.1021/acs.accounts.0c00518. Epub 2020 Nov 8.
4
Nanomedicines for an Enhanced Immunogenic Cell Death-Based Cancer Vaccination Response.
Acc Chem Res. 2024 Mar 19;57(6):905-918. doi: 10.1021/acs.accounts.3c00771. Epub 2024 Feb 28.
5
Emerging advances in synthetic cancer nano-vaccines: opportunities and challenges.
Expert Rev Vaccines. 2020 Nov;19(11):1053-1071. doi: 10.1080/14760584.2020.1858058. Epub 2020 Dec 14.
6
Engineered Nanoparticles for Cancer Vaccination and Immunotherapy.
Acc Chem Res. 2020 Oct 20;53(10):2094-2105. doi: 10.1021/acs.accounts.0c00456. Epub 2020 Oct 5.
7
Nanoparticle delivery systems in cancer vaccines.
Pharm Res. 2011 Feb;28(2):215-36. doi: 10.1007/s11095-010-0241-4. Epub 2010 Aug 19.
9
Intratumoral immunotherapy: using the tumor as the remedy.
Ann Oncol. 2017 Dec 1;28(suppl_12):xii33-xii43. doi: 10.1093/annonc/mdx683.
10
Recent Advances in Polymeric Nanomedicines for Cancer Immunotherapy.
Adv Healthc Mater. 2019 Feb;8(4):e1801320. doi: 10.1002/adhm.201801320. Epub 2019 Jan 22.

引用本文的文献

1
Single atom engineering for radiotherapy-activated immune agonist prodrugs.
Nat Commun. 2025 Jul 1;16(1):6021. doi: 10.1038/s41467-025-60768-4.
2
PH-Triggered, Lymph Node Focused Immunodrug Release by Polymeric 2-Propionic-3-Methyl-maleic Anhydrides with Cholesteryl End Groups.
Adv Healthc Mater. 2024 Dec;13(32):e2402875. doi: 10.1002/adhm.202402875. Epub 2024 Sep 23.
3
Biomimetic and bioinspired nano-platforms for cancer vaccine development.
Exploration (Beijing). 2023 Apr 25;3(3):20210263. doi: 10.1002/EXP.20210263. eCollection 2023 Jun.
4
Engineering kinetics of TLR7/8 agonist release from bottlebrush prodrugs enables tumor-focused immune stimulation.
Sci Adv. 2023 Apr 21;9(16):eadg2239. doi: 10.1126/sciadv.adg2239. Epub 2023 Apr 19.
5
Harnessing Biomaterials to Study and Direct Antigen-Specific Immunotherapy.
ACS Appl Bio Mater. 2023 Jun 19;6(6):2017-2028. doi: 10.1021/acsabm.3c00136. Epub 2023 Apr 17.
6
Nanotechnology-Based siRNA Delivery Systems to Overcome Tumor Immune Evasion in Cancer Immunotherapy.
Pharmaceutics. 2022 Jun 25;14(7):1344. doi: 10.3390/pharmaceutics14071344.
7
The interfacial interactions of nanomaterials with human serum albumin.
Anal Bioanal Chem. 2022 Jul;414(16):4677-4684. doi: 10.1007/s00216-022-04089-1. Epub 2022 May 11.
8
Bacteria as Nanoparticle Carriers for Immunotherapy in Oncology.
Pharmaceutics. 2022 Apr 3;14(4):784. doi: 10.3390/pharmaceutics14040784.
10
Therapeutic cancer vaccines for pediatric malignancies: advances, challenges, and emerging technologies.
Neurooncol Adv. 2021 Feb 11;3(1):vdab027. doi: 10.1093/noajnl/vdab027. eCollection 2021 Jan-Dec.

本文引用的文献

1
TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy.
Nat Biomed Eng. 2018 Aug;2(8):578-588. doi: 10.1038/s41551-018-0236-8. Epub 2018 May 21.
2
Micelles with ultralow critical micelle concentration as carriers for drug delivery.
Nat Biomed Eng. 2018 May;2(5):318-325. doi: 10.1038/s41551-018-0234-x. Epub 2018 May 7.
3
Impact of Polymer-TLR-7/8 Agonist (Adjuvant) Morphology on the Potency and Mechanism of CD8 T Cell Induction.
Biomacromolecules. 2019 Feb 11;20(2):854-870. doi: 10.1021/acs.biomac.8b01473. Epub 2019 Jan 22.
4
Polymer-drug conjugate therapeutics: advances, insights and prospects.
Nat Rev Drug Discov. 2019 Apr;18(4):273-294. doi: 10.1038/s41573-018-0005-0.
5
Magnitude of Therapeutic STING Activation Determines CD8 T Cell-Mediated Anti-tumor Immunity.
Cell Rep. 2018 Dec 11;25(11):3074-3085.e5. doi: 10.1016/j.celrep.2018.11.047.
6
Trial Watch: Toll-like receptor agonists in cancer immunotherapy.
Oncoimmunology. 2018 Oct 11;7(12):e1526250. doi: 10.1080/2162402X.2018.1526250. eCollection 2018.
7
Design of amidobenzimidazole STING receptor agonists with systemic activity.
Nature. 2018 Dec;564(7736):439-443. doi: 10.1038/s41586-018-0705-y. Epub 2018 Nov 7.
8
Immunogenic effects of chemotherapy-induced tumor cell death.
Genes Dis. 2018 May 17;5(3):194-203. doi: 10.1016/j.gendis.2018.05.003. eCollection 2018 Sep.
9
10
Liposomes and polymersomes: a comparative review towards cell mimicking.
Chem Soc Rev. 2018 Nov 26;47(23):8572-8610. doi: 10.1039/c8cs00162f.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验