Suppr超能文献

通过银河项目上的Tuxedo套件对秀丽隐杆线虫RNA测序数据进行转录组分析。

Transcriptomic Analysis of C. elegans RNA Sequencing Data Through the Tuxedo Suite on the Galaxy Project.

作者信息

Amrit Francis R G, Ghazi Arjumand

机构信息

Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh.

Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh;

出版信息

J Vis Exp. 2017 Apr 8(122):55473. doi: 10.3791/55473.

Abstract

Next generation sequencing (NGS) technologies have revolutionized the nature of biological investigation. Of these, RNA Sequencing (RNA-Seq) has emerged as a powerful tool for gene-expression analysis and transcriptome mapping. However, handling RNA-Seq datasets requires sophisticated computational expertise and poses inherent challenges for biology researchers. This bottleneck has been mitigated by the open access Galaxy project that allows users without bioinformatics skills to analyze RNA-Seq data, and the Database for Annotation, Visualization, and Integrated Discovery (DAVID), a Gene Ontology (GO) term analysis suite that helps derive biological meaning from large data sets. However, for first-time users and bioinformatics' amateurs, self-learning and familiarization with these platforms can be time-consuming and daunting. We describe a straightforward workflow that will help C. elegans researchers to isolate worm RNA, conduct an RNA-Seq experiment and analyze the data using Galaxy and DAVID platforms. This protocol provides stepwise instructions for using the various Galaxy modules for accessing raw NGS data, quality-control checks, alignment, and differential gene expression analysis, guiding the user with parameters at every step to generate a gene list that can be screened for enrichment of gene classes or biological processes using DAVID. Overall, we anticipate that this article will provide information to C. elegans researchers undertaking RNA-Seq experiments for the first time as well as frequent users running a small number of samples.

摘要

下一代测序(NGS)技术彻底改变了生物学研究的性质。其中,RNA测序(RNA-Seq)已成为基因表达分析和转录组图谱绘制的强大工具。然而,处理RNA-Seq数据集需要复杂的计算专业知识,这给生物学研究人员带来了固有的挑战。开放获取的Galaxy项目缓解了这一瓶颈,该项目允许没有生物信息学技能的用户分析RNA-Seq数据,还有注释、可视化与整合发现数据库(DAVID),这是一个基因本体(GO)术语分析套件,有助于从大型数据集中得出生物学意义。然而,对于首次使用的用户和生物信息学新手来说,自学并熟悉这些平台可能既耗时又令人生畏。我们描述了一个简单的工作流程,它将帮助秀丽隐杆线虫研究人员分离线虫RNA,进行RNA-Seq实验,并使用Galaxy和DAVID平台分析数据。本方案提供了逐步指导,说明如何使用Galaxy的各种模块来访问原始NGS数据、进行质量控制检查、比对以及差异基因表达分析,在每一步都为用户提供参数指导,以生成一个基因列表,该列表可使用DAVID筛选基因类别或生物学过程的富集情况。总体而言,我们预计本文将为首次进行RNA-Seq实验的秀丽隐杆线虫研究人员以及处理少量样本的频繁使用者提供信息。

相似文献

2
SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
BMC Bioinformatics. 2016 Feb 4;17:66. doi: 10.1186/s12859-016-0923-y.
3
A Guide for Designing and Analyzing RNA-Seq Data.
Methods Mol Biol. 2018;1783:35-80. doi: 10.1007/978-1-4939-7834-2_3.
4
ALFA: annotation landscape for aligned reads.
BMC Genomics. 2019 Mar 29;20(1):250. doi: 10.1186/s12864-019-5624-2.
5
Analysis of ChIP-Seq and RNA-Seq Data with BioWardrobe.
Methods Mol Biol. 2018;1783:343-360. doi: 10.1007/978-1-4939-7834-2_17.
6
Analysis and Visualization of ChIP-Seq and RNA-Seq Sequence Alignments Using ngs.plot.
Methods Mol Biol. 2016;1415:371-83. doi: 10.1007/978-1-4939-3572-7_18.
7
Quantitative transcriptome analysis using RNA-seq.
Methods Mol Biol. 2014;1158:71-91. doi: 10.1007/978-1-4939-0700-7_5.
8
9
RNA-Seq: revelation of the messengers.
Trends Plant Sci. 2013 Apr;18(4):175-9. doi: 10.1016/j.tplants.2013.02.001. Epub 2013 Mar 5.
10
RNA Sequencing Experimental Analysis Workflow Using Caenorhabditis elegans.
Methods Mol Biol. 2024;2812:115-141. doi: 10.1007/978-1-0716-3886-6_6.

引用本文的文献

2
piRNAs regulate a Hedgehog germline-to-soma pro-aging signal.
Nat Aging. 2023 Jan;3(1):47-63. doi: 10.1038/s43587-022-00329-2. Epub 2023 Jan 9.
4
Cell nonautonomous roles of NHR-49 in promoting longevity and innate immunity.
Aging Cell. 2021 Jul;20(7):e13413. doi: 10.1111/acel.13413. Epub 2021 Jun 22.
5
Immunity-longevity tradeoff neurally controlled by GABAergic transcription factor PITX1/UNC-30.
Cell Rep. 2021 May 25;35(8):109187. doi: 10.1016/j.celrep.2021.109187.

本文引用的文献

1
The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update.
Nucleic Acids Res. 2016 Jul 8;44(W1):W3-W10. doi: 10.1093/nar/gkw343. Epub 2016 May 2.
2
Analysis of Whole Transcriptome Sequencing Data: Workflow and Software.
Genomics Inform. 2015 Dec;13(4):119-25. doi: 10.5808/GI.2015.13.4.119. Epub 2015 Dec 31.
3
DAF-16 and TCER-1 Facilitate Adaptation to Germline Loss by Restoring Lipid Homeostasis and Repressing Reproductive Physiology in C. elegans.
PLoS Genet. 2016 Feb 10;12(2):e1005788. doi: 10.1371/journal.pgen.1005788. eCollection 2016 Feb.
4
Advanced Applications of RNA Sequencing and Challenges.
Bioinform Biol Insights. 2015 Nov 15;9(Suppl 1):29-46. doi: 10.4137/BBI.S28991. eCollection 2015.
5
BioWardrobe: an integrated platform for analysis of epigenomics and transcriptomics data.
Genome Biol. 2015 Aug 7;16(1):158. doi: 10.1186/s13059-015-0720-3.
6
Lipid-mediated regulation of SKN-1/Nrf in response to germ cell absence.
Elife. 2015 Aug 24;4:e07836. doi: 10.7554/eLife.07836.
7
The C. elegans lifespan assay toolkit.
Methods. 2014 Aug 1;68(3):465-75. doi: 10.1016/j.ymeth.2014.04.002. Epub 2014 Apr 13.
8
Next-generation sequencing platforms.
Annu Rev Anal Chem (Palo Alto Calif). 2013;6:287-303. doi: 10.1146/annurev-anchem-062012-092628.
9
Differential analysis of gene regulation at transcript resolution with RNA-seq.
Nat Biotechnol. 2013 Jan;31(1):46-53. doi: 10.1038/nbt.2450. Epub 2012 Dec 9.
10
Transcriptional networks that mediate signals from reproductive tissues to influence lifespan.
Genesis. 2013 Jan;51(1):1-15. doi: 10.1002/dvg.22345. Epub 2012 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验