Suppr超能文献

模式生物修饰因子(MOM):一个使用秀丽隐杆线虫从基因组测序数据中检测修饰因子的用户友好型 Galaxy 工作流程。

Model Organism Modifier (MOM): a user-friendly Galaxy workflow to detect modifiers from genome sequencing data using Caenorhabditis elegans.

机构信息

Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.

Department of Medical Genetics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.

出版信息

G3 (Bethesda). 2023 Nov 1;13(11). doi: 10.1093/g3journal/jkad184.

Abstract

Genetic modifiers are variants modulating phenotypic outcomes of a primary detrimental variant. They contribute to rare diseases phenotypic variability, but their identification is challenging. Genetic screening with model organisms is a widely used method for demystifying genetic modifiers. Forward genetics screening followed by whole genome sequencing allows the detection of variants throughout the genome but typically produces thousands of candidate variants making the interpretation and prioritization process very time-consuming and tedious. Despite whole genome sequencing is more time and cost-efficient, usage of computational pipelines specific to modifier identification remains a challenge for biological-experiment-focused laboratories doing research with model organisms. To facilitate a broader implementation of whole genome sequencing in genetic screens, we have developed Model Organism Modifier or MOM, a pipeline as a user-friendly Galaxy workflow. Model Organism Modifier analyses raw short-read whole genome sequencing data and implements tailored filtering to provide a Candidate Variant List short enough to be further manually curated. We provide a detailed tutorial to run the Galaxy workflow Model Organism Modifier and guidelines to manually curate the Candidate Variant Lists. We have tested Model Organism Modifier on published and validated Caenorhabditis elegans modifiers screening datasets. As whole genome sequencing facilitates high-throughput identification of genetic modifiers in model organisms, Model Organism Modifier provides a user-friendly solution to implement the bioinformatics analysis of the short-read datasets in laboratories without expertise or support in Bioinformatics.

摘要

遗传修饰物是调节主要有害变异表型结果的变异。它们导致罕见疾病表型的可变性,但它们的鉴定具有挑战性。利用模式生物进行遗传筛选是一种用于揭示遗传修饰物的广泛使用的方法。正向遗传学筛选后进行全基因组测序可以检测整个基因组中的变体,但通常会产生数千个候选变体,这使得解释和优先级确定过程非常耗时且乏味。尽管全基因组测序更节省时间和成本,但对于专注于生物学实验的实验室来说,使用特定于修饰物鉴定的计算管道仍然是一个挑战,这些实验室使用模式生物进行研究。为了促进全基因组测序在遗传筛选中的更广泛应用,我们开发了 Model Organism Modifier 或 MOM,这是一个作为用户友好型 Galaxy 工作流程的管道。Model Organism Modifier 分析原始短读长全基因组测序数据,并实施定制过滤,以提供足够短的候选变体列表,以便进一步手动编辑。我们提供了一个详细的教程,用于运行 Galaxy 工作流程 Model Organism Modifier,并提供了手动编辑候选变体列表的指南。我们已经在已发表和验证的秀丽隐杆线虫修饰物筛选数据集上测试了 Model Organism Modifier。由于全基因组测序促进了模型生物中遗传修饰物的高通量鉴定,Model Organism Modifier 为没有生物信息学专业知识或支持的实验室提供了一种用户友好的解决方案,可用于对短读长数据集进行生物信息学分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验